Answer:
1201 lbs
Explanation:
Given that in mammals, the weight of the heart is approximately 0.5% of the total body weight.
Let the weight of the heart of a mammal be H
And the weight of the total body be B
The linear model that can gives the heart weight in terms of the total body weight will be:
H = 0.005B
B.) To find the weight of the heart of a whale whose weight is 2.402 × 105 lbs, substitute the whole weight in the formula.
H = 0.005 × 2.402 × 10^5
H = 1201 lbs
Therefore, the weight of the heart of the whale is 1201 lbs
Time = (distance) / (speed)
Time = (150 x 10⁹ m) / (3 x 10⁸ m/s) =
50 x 10¹ sec =
<em>500 sec</em> = 8 min 20 sec
Answer:
Explanation:
In the x direction the force will be
½(-w₀)L/2 = -¼w₀L
acting ⅔(L/2) = L/3 below the x axis.
In the y direction the force will be
½(-w₀)L + ½w₀L/2 = -¼w₀L
the magnitude of the resultant will be
F = w₀L √((-¼)² + (-¼)²) = w₀L√⅛
in the direction
θ = arctan(-¼w₀L / -¼w₀L) = 225°
to find the distance, we balance moments
(w₀L√⅛)[d] = ½(w₀)L[⅔L] + ¼w₀L[⅔L/2] - ¼w₀L[L - ⅓L/2]
(√⅛)[d] = ½ [⅔L] + ¼ [⅔L/2] - ¼ [L - ⅓L/2]
(√⅛)[d] = ½[⅔L] + ¼[⅔L/2] - ¼[L - ⅓L/2]
(√⅛)[d] = ⅓L + ⅟₁₂L - ¼L + ⅟₂₄L
(√⅛)[d] = 5L/24
d = 5L/24 / (√⅛)
d = 5√⅛L/3
Answer:

Explanation:
= Cambio en la longitud de la cuerda = 0.25 cm
T = tensión en cuerda
A = Área de la cadena = 
d = Diámetro de la cuerda = 0.2 cm
L = Longitud original de la cuerda = 1.6 m
El cambio de longitud de una cuerda viene dado por

La tensión en la cuerda es
.
Produce power through the circuit.