Answer:
a)KE=878.8 J
b)W=2636.4 J
Explanation:
Given that
mass ,m = 65 kg
Initial speed ,u = 5.2 m/s
a)
We know that kinetic energy KE is given as follows

m=mass
u=velocity
Now by putting the values in the above equation we get

KE=878.8 J
b)
We know that
Work done by all forces = Change in the kinetic energy
The final velocity , v= 2 u = 2 x 5.2 m/s
v= 10.4 m/s

Now by putting the values in the above equation we get

W=2636.4 J
a)KE=878.8 J
b)W=2636.4 J
In order to draw the free body diagram, first let's calculate the friction force acting on the crate:

Since the friction force is greater than the force applied, the crate will not move, and the friction force will be equal to the force applied.
The weight force is equal to 40 * 9.8 = 392 N.
So, drawing the diagram, we have:
Answer:
400 trips
Explanation:
Mechanical energy needed to climb 14 m by a man of 68 kg
= mgh
= 68 x 9.8 x 14
= 9330 J
1 Kg of fat releases 3.77 x 10⁷ J of energy
.45 kg of fat releases 1.6965 x 10⁷ J of energy
22% is converted into mechanical energy
so 22% of 1.6965 x 10⁷ J
= 3732.3 x 10³ J of mechanical energy will be available for mechanical work.
one trip of climbing of 14 m requires 9330 J of mechanical energy
no of such trip possible with given mechanical energy
= 3732.3 x 10³ / 9330
= 400 trips
Answer:
D
Explanation:
Maybe your question is meant to be: which is not a wedge, because wedge is a combination of two inclined planes, use to separate bodies which are held together by large forces. Option A,B & C are all wedge except D.
Answer:
19.01 N
Explanation:
F = Force being applied to the crate = 45 N
= Angle at which the force is being applied = 
Horizontal component of force is given by

The horizontal component of the force acting on the crate is 19.01 N.