Answer:
b) 7.00
Explanation:
N( t ) = -20( t - 5 )²
dN/ dt = -20 x 2 ( t - 5 )
For maximum N ( depth )
dN/dt = 0
- 40 ( t - 5 ) = 0
t = 5
So at 2 + 5 = 7 .00 am depth of water reaches its maximum.
Answer:
The correct option is;
B) No, the Navy vessel is slower
Explanation:
The speed of some torpedoes can be as high as 370 km/h. The average speed of a fast Navy vessel is approximately 110 km/h
Therefore, the torpedoes travel approximately 3 times as fast as the (slower) Navy vessel, such that the torpedo covers three times the distance of the Navy vessel in the same time and therefore, if the Navy vessel and the torpedo continue in a straight line (in the same direction) due north the vessel can not outrun the torpedo
Therefore, no the Navy vessel travels slower than a torpedo.
Answer:
17.4 cm
Explanation:
Power of lens = +1.75 diopters
Focal length of lens

This is a convex lens as focal the diopter given is positive which makes the focal length positive. Image distance will be negative.
v = -25

∴ The new near point is 17.4 cm
To determine the amount in grams of the iron, we need data on the density of iron. From literature, it has a value of <span>p=7.9 g/cm3. We simply multiply the volume to the density. We do as follows:
mass = 3.70 (7.9) = 29.23 g Fe
Hope this answers the question. Have a nice day.</span>
F = q₁q₂C / r²
F force
q charge
C Coulomb constant
r separation between charges