A) A concave mirror forming a larger, virtual image
Explanation:
The figure is missing; see attachment.
There are two types of mirror:
- Concave (converging) mirrors: a concave mirror is a mirror that reflects the light inward
- Convex (diverging) mirrors: a convex mirror is a mirror that reflects the light outward
The image formed by a mirror can also be of two types:
- Real image: it is formed on the same side of the object, with respect to the mirror
- Virtual image: it is formed on the opposite side of the object, with respect to the mirror
In the figure of this problem (see attachment), we see that:
- The mirror reflects the light from the object inward --> so it is a concave mirror
- The image is formed on the other side of the mirror --> it is a virtual image
So the correct option is
A) A concave mirror forming a larger, virtual image
Learn more about mirrors:
brainly.com/question/8737441
#LearnwithBrainly
First we have to calculate the time taken to travel the distance 30 m, is
.
Now from equation of motion,

Given,
.
As object starts from rest, so u = 0.
Substituting these values in above equation, we get
.
Thus, the acceleration is 
In my view, correct answer should look like this: Although wave power does not produce pollution, some people may not want to invest in it because it is <span>prone to storm damage and limited to particular areas of the ocean.</span>
Answer:
Explanation:
We shall apply Stefan's formula
E = AσT⁴
When T = 300
I₁ = Aσ x 300⁴
When T = 400K
I₂ = Aσ x 400⁴
I₂ / I₁ = 400⁴ / 300⁴
= 256 / 81
= 3.16
I₂ = 3.16 I₁ .