Answer:
Step-by-step explanation:
See attachment for the figure
Volume of pyramid can be defined as
V = 1/3 x area of the base x height.
-> Pyramid A:
Volume of Pyramid can be determined by:
V = 1/3 x (2.6cm)² x (2cm) = 4.5067 cm³
Pyramid B:
Volume of Pyramid can be determined by:
V = 1/3 x (2cm)² x (2.5cm) = 3.3333 cm³
Difference b/w two oblique pyramids: 4.5067 cm³ - 3.333 cm³ = 1.17 cm³
By Rounding the volumes to the nearest tenth of a centimeter
1.17cm³ ≈ 1.2cm³
Therefore, the difference of the volumes of the two oblique pyramids is 1.2cm³
x = –6
Solution:
Given expression is
.
Step 1: Isolate the radical by subtracting 5 from both sides of the equation.
![\Rightarrow\sqrt[3]{x-2}+5-5=3-5](https://tex.z-dn.net/?f=%5CRightarrow%5Csqrt%5B3%5D%7Bx-2%7D%2B5-5%3D3-5)
![\Rightarrow\sqrt[3]{x-2}=-2](https://tex.z-dn.net/?f=%5CRightarrow%5Csqrt%5B3%5D%7Bx-2%7D%3D-2)
Step 2: Cube both sides of the equation to remove the cube root.
![\Rightarrow(\sqrt[3]{x-2})^3=(-2)^3](https://tex.z-dn.net/?f=%5CRightarrow%28%5Csqrt%5B3%5D%7Bx-2%7D%29%5E3%3D%28-2%29%5E3)
Cube and cube root get canceled in left side of the equation.

Step 3: To solve for x.
Add 2 on both sides of the equation.


Hence the solution is x = –6.
A. Equilateral because it says” same measure”
66 degrees divided by 2= 33 degrees
Then, 22/2=11
11/sin(33)= 20.2
Say you had the numbers 3 and 4. The LCM is the lowest number that both 3 and 4 will factor into.
The multiples of 4: 4,8,12,16,20,24
The multiples of 3: 3,6,9,12,15,18,21,24
They both factor into 12 and 24 but 12 is the least common multiple or smallest number they both go into :) I really hope this helps!! :)