Answer:
The ball will be at 700 m above the ground.
Explanation:
We can use the following kinematic equation
.
where y(t) represent the height from the ground. For our problem, the initial height will be:
.
The initial velocity:
,
take into consideration the minus sign, that appears cause the ball its thrown down. The same minus appears for the acceleration:

So, the equation for our problem its:
.
Taking t=6 s:
.
.
.
.
.
So this its the height of the ball 6 seconds after being thrown.
Given :
Vector A has a magnitude of 63 units and points west, while vector B has the same magnitude and points due south.
To Find :
The magnitude and direction of
a) A + B .
b) A - B.
Solution :
Let , direction in north is given by +j and east is given by +i .
So ,
and 
Now , A + B is given by :


Direction of A+B is 45° north of west .
Also , for A-B :


Direction of A-B is 45° south of west .
( When two vector of same magnitude which are perpendicular to each other are added or subtracted the resultant is always 45° from each of them)
Hence , this is the required solution .
Answer:

Decrease
Explanation:
I = Current = 3.7 A
e = Charge of electron = 
n = Conduction electron density in copper = 
= Drift velocity of electrons
r = Radius = 1.23 mm
Current is given by

The drift speed of the electrons is 

From the equation we can see the following

So, if the number of conduction electrons per atom is higher than that of copper the drift velocity will decrease.
If a man pushes on a wall with some force then according to Newton's third law, wall will also apply force on man with same magnitude but opposite in direction.