Answer:
Option D. 4.4 m/s²
Explanation:
The following data were obtained from the question:
Velocity (v) = 21 m/s
Radius (r) = 100 m
Centripetal acceleration (a) =.?
The centripetal acceleration of the car can be obtained as follow:
Centripetal acceleration (a) = Velocity square (v²) / radius (r)
a = v²/r
a = 21²/100
a = 441/100
a = 4.41 ≈ 4.4 m/s²
Therefore, the centripetal acceleration of the car is 4.4 m/s².
Answer:

Explanation:
Recall that the formula for an inductance (L) for coil on N turns, are A and current I is given by:

Then, for the first coil we have;

and for coil 2 we have:

then, the quotient L1/L2 can be written as:

Explanation:
1. Height Relatives to reference point, Mass, and strength of the gravitational field it's in
2. Distance in the magnetic field
"<span>The number of times a machine multiplies the effort force is the what of the machine"
Work Output is the answer, I believe.</span>
Answer:
Time, t = 13.34 seconds.
Explanation:
Given the following data;
Initial velocity, u = 85km/hr to meters per seconds = 85*1000/3600 = 23.61 m/s
Final velocity, v = 45km/hr to meters per seconds = 45*1000/3600 = 12.5 m/s
Acceleration, a = -3 km/hr/sec to meters per seconds square = -3*1000/3600 = -0.833m/s²
To find the time;
Acceleration = (v - u)/t
-0.833 = (12.5 - 23.61)/t
-0.833t = -11.11
t = 11.11/0.833
Time, t = 13.34 seconds.