An exergonic reaction is a chemical reaction where the change in the free energy is negative (there is a net release of free energy),[1] indicating a spontaneous reaction. For processes that take place under constant pressure and temperature conditions, the Gibbs free energy is used whereas the Helmholtz energy is used for processes that take place under constant volume and temperature conditions.
Symbolically, the release of free energy, G, in an exergonic reaction (at constant pressure and temperature) is denoted as
{\displaystyle \Delta G=G_{\rm {products}}-G_{\rm {reactants}}<0.\,}
Although exergonic reactions are said to occur spontaneously, this does not imply that the reaction will take place at an observable rate. For instance, the disproportionation of hydrogen peroxide is very slow in the absence of a suitable catalyst. It has been suggested that eager would be a more intuitive term in this context.[2]
More generally, the terms exergonic and endergonic relate to the free energy change in any process, not just chemical reactions. An example of an exergonic reaction is cellular respiration. This relates to the degrees of freedom as a consequence of entropy, the temperature, and the difference in heat released or absorbed.
By contrast, the terms exothermic and endothermic relate to the overall exchange of heat during a process
Answer:
The reactants would appear at a higher energy state than the products.
Have a nice day!
It is a bit like a video game because when you dumb it down, it's basically a small robotic thing that is controlled by a controller. In video games, you have an avatar being controlled inside a game using a gamepad, in surgery you have a little machine inside of a person's body being controlled using a computer.
The process that describes the transfer of heat through matter by activity of the molecules would be conduction. This type of heat transfer due to the motion of electrons and ions. within a body. As molecules collide with each energy is transferred and released which cause temperature to rise or drop.<span />