True. Covalent bonds involve sharing electrons to create a full valence shell.
Answer:
The answer is 20 % V/V
Explanation:
We use this formula for calculate the %V/V:
%V/V= (ml solute/ml solution) x 100= (75ml/375 ml)x 100 = 20 % V/V
<em>The% V / V represents the amount of ml of solute dissolved in 100 ml of solution</em>
Answer:
50 MHz
Explanation:
The relation between frequency and wavelength is shown below as:

c is the speed of light having value 
Given, Wavelength = 6 m
Thus, Frequency is:



Also,
Also, 1 Hz =
MHz
So,<u> Frequency = 50 MHz.</u>
Intermolecular forces in solids are strongest than in liquids and gases. Gases have the least strong intermolecular forces. Intermolecular forces are weak and are significant over short distances between molecules (determined by Coulomb’s law). The farther away from the molecules the weaker the intermolecular forces. Since molecules in solids are the closest, the intermolecular force between them as the strongest. Conversely, since gas molecules are farthest apart, the intermolecular forces between them are the weakest.