1) c. 2 m/s
Explanation:
The relationship between frequency, wavelength and speed of a wave is

where
v is the speed
is the wavelength
f is the frequency
For the wave in this problem,
f = 4 Hz

So, the speed is

2) a. 2.8 m/s
The speed of the wave on a string is given

where
T is the tension in the string
is the linear mass density
In this problem, we have:
(final tension in the rope, which is twice the initial tension)
--> mass density of the rope
Substituting into the formula, we find

Answer:
v' = 2.4 m/s
Explanation:
Given that,
Mass of one skater, m = 60 kg
Mass of the other's skater, m' = 60 kg
The two skaters push off each other. After the push, the smaller skater has a velocity of 3.0 m/s.
When there is no external force acting on a system, the momentum remains conserved. It means initial momentum is equal to the final momentum. Let v' is the velocity of the larger skater.
mv = m'v'

So, the velocity of the larger skater is 2.4 m/s.
First, before determining which variable is which, we go over the definition of each.
The independent variable is the one which is intentionally changed in order to investigate its effect on the dependent variable.
The dependent variable is monitored and changes occur in it due to the changing conditions of the independent variable.
In this case, the location of the African violets is the independent variable as it is intentionally changed, while the rate of growth of the African violets is the dependent variable as it is being measured.
Acceleration = (change in speed) / (time for the change)
change in speed = (speed at the end) - (speed at the beginning)
Our cyclist's change in speed = (3 m/s) - (8 m/s) = -5 m/s
Acceleration = (-5 m/s) / (60 seconds)
<em>Acceleration = -1/12 m/s²</em>
Answer:
f = 735 Hz
Explanation:
given,
Person distance from speakers
r₁ = 4.1 m r₂ = 4.8 m
Path difference
d = r₂ - r₁ = 4.8 - 4.1 = 0.7 m
For destructive interference

where, n = 1, 3,5..
we know, λ = v/f

v is the speed of the sound = 343 m/s
f is the frequency

for n = 1

f = 245 Hz
for n = 3

f = 735 Hz
Hence,the second lowest frequency of the destructive interference is 735 Hz.