Answer:



Explanation:
g = Acceleration due to gravity = 
= Angle of slope = 
v = Velocity of child at the bottom of the slide
= Coefficient of kinetic friction
= Coefficient of static friction
h = Height of slope = 1.8 m
The energy balance of the system is given by

The speed of the child at the bottom of the slide is 
Length of the slide is given by


The force energy balance of the system is given by

The coefficient of kinetic friction is
.
For static friction

So, the minimum possible value for the coefficient of static friction is
.
If the car is on the moon, its mass is about 817 kg.
If it's on the Earth, its mass is about 135 kg.
Hello
It is called lightning. Lightning in a storm occurs when there are two regions (it can be cloud-cloud or cloud-ground), one with a strong excess of positive charges and the other one with a strong excess of negative charges. The two types of charge attract each other, and then a sudden flow of charges from one region to the other occurs, which is called lightning.
The figure shows the arrangement of system
The velocity of boat can be resolved in to two
Horizontal component = vcos θ = 2.50 cos 45 = 1.768 m/s
Vertical component = vsin θ = 2.50 sin 45 = 1.768 m/s
Due to horizontal component the boat arrive arrives upstream,
Total horizontal velocity = 1.768 - Vr, where Vr is the velocity of river.
Total time taken to cross the river = width of river/ Vertical component of velocity
t = 285/1.768 = 161.20 seconds
So 118 meter is traveled at a velocity of 1.768-Vr in 161.20 seconds
That is 118 = (1.768-Vr)*161.20
1.768 - Vr =0.732
Vr = 1.036 m/s
So velocity of river flow =1.036 m/s