1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
3 years ago
13

Two planets A and B, where B has twice the mass of A, orbit the Sun in elliptical orbits. The semi-major axis of the elliptical

orbit of planet B is two times larger than the semi major axis of the elliptical orbit of planet A. What is the ratio of the orbital period of planet B to that of planet A?
Physics
2 answers:
erastova [34]3 years ago
8 0

Answer:

T_b / T_a = sqrt ( 8 )    

Explanation:

Given:

- The mass of planet A = m _a

- The mass of planet B = 2*m _a

- The semi-major axis of plant A = a

- The semi-major axis of plant B = 2*a

Find:

- What is the ratio of the orbital period of planet B to that of planet A?

Solution:

- Kepler's Third Law for planetary motion of a satellite in an elliptical orbit is gives us the relation of time period as follows:

                            T = 2*pi*sqrt ( a^3 / G*M_s )

Where,

a : Semi major axis of the period.

M_s : It is the mass of the sun.

G: Gravitational constant

- So for planet A, we can develop an expression for time period:

                            T_a = 2*pi*sqrt ( a^3 / G*M_s )

- And for planet B, we can develop an expression for time period:

                            T_b = 2*pi*sqrt ( (2a)^3 / G*M_s )

- Now take the ratio of T_b to T_a:

     T_b / T_a = 2*pi*sqrt ( (2a)^3 / G*M_s ) / 2*pi*sqrt ( a^3 / G*M_s )

Simplify,

                T_b / T_a = sqrt ( (2a)^3 / a^3 ) = sqrt ( 8a^3 / a^3 )

                                     T_b / T_a = sqrt ( 8 )              

lozanna [386]3 years ago
6 0

Answer:

2.83

Explanation:

Kepler's discovered that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit, that is called Kepler's third law of planet motion and can be expressed as:

T=\frac{2\pi a^{\frac{3}{2}}}{\sqrt{GM}} (1)

with T the orbital period, M the mass of the sun, G the Cavendish constant and a the semi major axis of the elliptical orbit of the planet. By (1) we can see that orbital period is independent of the mass of the planet and depends of the semi major axis, rearranging (1):

\frac{T}{a^{\frac{3}{2}}}=\frac{2\pi}{\sqrt{GM}}

\frac{T^{2}}{a^{3}}=(\frac{2\pi }{\sqrt{GM}})^2 (2)

Because in the right side of the equation (2) we have only constant quantities, that implies the ratio \frac{T^{2}}{a^{3}} is constant for all the planets orbiting the same sun, so we can said that:

\frac{T_{A}^{2}}{a_{A}^{3}}=\frac{T_{B}^{2}}{a_{B}^{3}}

\frac{T_{B}^{2}}{T_{A}^{2}}=\frac{a_{B}^{3}}{a_{A}^{3}}

\frac{T_{B}}{T_{A}}=\sqrt{\frac{a_{B}^{3}}{a_{A}^{3}}}=\sqrt{\frac{(2a_{A})^{3}}{a_{A}^{3}}}

\frac{T_{B}}{T_{A}}=\sqrt{\frac{2^3}{1}}=2.83

You might be interested in
1 gram of radium is reduced by 3.1 mg in 5 years by alpha decay.
Whitepunk [10]

Answer:

1 gm = 1000 mg

N = No e^-y t       where y = lambda the decay constant

N / N0 = .9969

ln .9969 = - y t

-.00310 = - 5 y

y = .00310 / 5 = .000621

So the half-life = .693 / y

T^1/2 = .693 / .000621 = 1116 or about 1120 yrs

4 0
3 years ago
Billy drops a ball from a height of 1 m. The ball bounces back to a height of 0.8 m, then
Andreas93 [3]

Answer:

The displacement is  \Delta H =    -  1 \ m

The distance  is  D =  4 \  m

Explanation:

From  the question we are told that

    The height from which the ball is dropped is  h  =  1 \ m

    The height attained at  the first bounce is  h_1  = 0.8  \  m

    The height attained at  the second bounce is   h_2 = 0.5 \  m

    The height attained at  the third bounce is h_3 = 0.2 \  m

Note  : When calculating displacement we consider the direction of motion

Generally given that upward is positive  the total displacement of the ball is mathematically represented as

            \Delta H =  (0  -  h ) + ( h_1 - h_1 ) + (h_2 - h_2 )+ (h_3 - h_3)

Here the 0 show that there was no bounce back to the point where Billy released the ball  

           \Delta H =  (0  -  1 ) + ( 0.8- 0.8 ) + (0.5 - 0.5 )+ (0.2 - 0.2)

=>          \Delta H =    -  1 \ m

Generally the distance covered by the ball is mathematically represented as  

                D =  h +  2h_2 + 2h_3 + 2h_3

The 2 shows that the ball traveled the height two times

              D =  1 +  2* 0.8  + 2* 0.5 + 2* 0.2

=>           D =  4 \  m

     

5 0
3 years ago
Willa, the cartoon witch, dusts her crystal ball with her silk scarf, causing it to become charged with 5.0 x 10^ -9 C. Willa th
DIA [1.3K]

Answer:

The distance between the tip of her nose from the center of the crystal ball is 14.3 cm.

Explanation:

Given that,

Charge, q=5\times 10^{-9}\ C

The end of her nose experiences an electric field strengths of 2200 N/C

It is required to find the distance between the tip of her nose from the center of the crystal ball. The formula of the electric field is given by :

E=\dfrac{kq}{r^2}

r is distance

r=\sqrt{\dfrac{kq}{E}} \\\\r=\sqrt{\dfrac{9\times 10^9\times 5\times 10^{-9}}{2200}} \\\\r=0.143\ m\\\\r=14.3\ cm

So, the distance between the tip of her nose from the center of the crystal ball is 14.3 cm.

3 0
3 years ago
Which statement best define energy
Ksju [112]

Answer:

"The capacity of a system to perform work of any type."

Explanation:

The best statement to describe Energy is:

"The capacity of a system to perform work of any type."

6 0
3 years ago
Consider a system two point charges. One has charge +q at (x, y,z) -(a,0,0) and another of charge-q at (x, y, z) = (-a, 0,0). 5.
olga2289 [7]

Answer:

electricfield at (0,0,0) is Et = 2 k q / a²

Explanation:

For the first part see the diagram , the field lines start from the positive charge and reach the negative charge, notice that no line should cross, some lines go to infinity

For the second part we use that the electric field is a vector quantity and therefore we add the field of each charge, using the equation

     E = k q / r²

Point (0,0,0)

We calculate for the charge -q which is at a distance R = a

   E1 = k (-q) / a²

   E1 = - kq / a²

As the test charge is positive in the field it goes to the left, attractive force

We calculate for the charge that is also at R = a

    E2 = k q / a²

This field goes to the left, repulsive force

We find the total electric field

    Et = E1 + E2

    Et = kq / a² + kq / a²

    Et = 2 k q / a²

Point (0,0, R)

We use the same equations, but with another distance, for the charge -q the distance is R = R+a and for the charge + q the distance is R = R-a

     E1 = k q / (R + a)²

     E2 = kq / (R-a)²

     Et = kq [1 / (R + a)² + 1 / (R-a)²]

     Et= kq {[(R-a)² + (R + a)²] / [(R + a)² (R-a)²]}

     Et= kq {2 (R² + a²) / [(R + a)² (R-a)²]}

If we use the condition that  R> a we can despise in the patents "a"

     (R² + a²) = R² (1+ a² / R²) ≈ R²

     (R + a)² = R² (1 + a / R)² ≈ R²

     (R- a)²  = R² (1-a / R)² ≈ R²

Substituting in the total electric field

     Et = kq {2 R²) / [R²R²]}

     Et =kq 2 / R²

7 0
3 years ago
Other questions:
  • What happens when you drink water that was in the car heated then you drink it. Make sure to explain your answer to make you as
    5·2 answers
  • Two kittens are sleeping in a sunny spot. they are relying mainly on what kind of heat transfer?
    5·2 answers
  • If v lies in the first quadrant and makes an angle Ï/3 with the positive x-axis and |v| = 4, find v in component form.
    5·1 answer
  • The military uses a special instrument to detect this type of wave to help improve night vision.
    8·2 answers
  • A billiard ball moving at 5.00 m/s strikes a stationary ball of the same mass. After the collision, the first ball moves at 4.33
    6·1 answer
  • Complete the sentence below using the words provided in parentheses (). For two universes that are the same size, the universe w
    12·1 answer
  • Look at the distance-time graph below. It shows Angela's journey as she walks to the end of the road and back. The gradient repr
    8·1 answer
  • Which two quantities can be expressed using the same units?
    6·1 answer
  • Describe the two dimensions of the motion of an object in a circle due to centripetal force. Explain why putting them together r
    12·1 answer
  • Two people hear a tornado siren, but one listener is 81.9 times farther away from the source of the sound than the other. What i
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!