1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
3 years ago
13

Two planets A and B, where B has twice the mass of A, orbit the Sun in elliptical orbits. The semi-major axis of the elliptical

orbit of planet B is two times larger than the semi major axis of the elliptical orbit of planet A. What is the ratio of the orbital period of planet B to that of planet A?
Physics
2 answers:
erastova [34]3 years ago
8 0

Answer:

T_b / T_a = sqrt ( 8 )    

Explanation:

Given:

- The mass of planet A = m _a

- The mass of planet B = 2*m _a

- The semi-major axis of plant A = a

- The semi-major axis of plant B = 2*a

Find:

- What is the ratio of the orbital period of planet B to that of planet A?

Solution:

- Kepler's Third Law for planetary motion of a satellite in an elliptical orbit is gives us the relation of time period as follows:

                            T = 2*pi*sqrt ( a^3 / G*M_s )

Where,

a : Semi major axis of the period.

M_s : It is the mass of the sun.

G: Gravitational constant

- So for planet A, we can develop an expression for time period:

                            T_a = 2*pi*sqrt ( a^3 / G*M_s )

- And for planet B, we can develop an expression for time period:

                            T_b = 2*pi*sqrt ( (2a)^3 / G*M_s )

- Now take the ratio of T_b to T_a:

     T_b / T_a = 2*pi*sqrt ( (2a)^3 / G*M_s ) / 2*pi*sqrt ( a^3 / G*M_s )

Simplify,

                T_b / T_a = sqrt ( (2a)^3 / a^3 ) = sqrt ( 8a^3 / a^3 )

                                     T_b / T_a = sqrt ( 8 )              

lozanna [386]3 years ago
6 0

Answer:

2.83

Explanation:

Kepler's discovered that the square of the orbital period of a planet is proportional to the cube of the semi-major axis of its orbit, that is called Kepler's third law of planet motion and can be expressed as:

T=\frac{2\pi a^{\frac{3}{2}}}{\sqrt{GM}} (1)

with T the orbital period, M the mass of the sun, G the Cavendish constant and a the semi major axis of the elliptical orbit of the planet. By (1) we can see that orbital period is independent of the mass of the planet and depends of the semi major axis, rearranging (1):

\frac{T}{a^{\frac{3}{2}}}=\frac{2\pi}{\sqrt{GM}}

\frac{T^{2}}{a^{3}}=(\frac{2\pi }{\sqrt{GM}})^2 (2)

Because in the right side of the equation (2) we have only constant quantities, that implies the ratio \frac{T^{2}}{a^{3}} is constant for all the planets orbiting the same sun, so we can said that:

\frac{T_{A}^{2}}{a_{A}^{3}}=\frac{T_{B}^{2}}{a_{B}^{3}}

\frac{T_{B}^{2}}{T_{A}^{2}}=\frac{a_{B}^{3}}{a_{A}^{3}}

\frac{T_{B}}{T_{A}}=\sqrt{\frac{a_{B}^{3}}{a_{A}^{3}}}=\sqrt{\frac{(2a_{A})^{3}}{a_{A}^{3}}}

\frac{T_{B}}{T_{A}}=\sqrt{\frac{2^3}{1}}=2.83

You might be interested in
The SI unit for pressure is pascal (Pa). One hectopascal would equal how many pascals?
Marat540 [252]
1 hectopascal (hPa) is equivalent to 100 Pa
3 0
3 years ago
Read 2 more answers
Can anyone please explain this point with an example. I have presentation tomorrow.
r-ruslan [8.4K]

Explanation:

Efficiency is a way of describing the amount of useful ​output​ a process or machine can generate as a percentage of the ​input​ required to make it go. In other words, it compares how much energy is used to do work versus how much is lost or wasted to the environment. The more efficient the machine, the less energy wasted.

For example, if a heat engine is able to turn 75 percent of the fuel it receives into motion, while 25 percent is lost as heat in the process, it would be 75 percent efficient. Out of the original 100 percent of the fuel, 75 percent was output as useful work.  

the equation:

energy efficiency =useful output energy/total input energy

8 0
2 years ago
Most of the compunds that make up organisms contain __
8090 [49]
All living creatures contain carbon
6 0
3 years ago
Which of the following statements about planetary satellites is true? all planetary satellites are as large as our moon or bigge
Illusion [34]
<span> planetary satellites vary greatly in size, from very small, to some that are larger than some planets.</span>
6 0
3 years ago
Read 2 more answers
Who were we in the space/arms race with?<br> In the movie *Hidden figures*
daser333 [38]

Explanation:

The U.S. launched its first man into space in May 1961.

4 0
3 years ago
Other questions:
  • What evidence do scientists have that earth has been hit by large objects like asteroids in the past
    9·1 answer
  • On the planet Xenophous a 1.00 m long pendulum on a clock has a period of 1.32 s. What is the free fall acceleration on Xenophou
    12·1 answer
  • A 1.30-m long gas column that is open at one end and closed at the other end has a fundamental resonant frequency 80.0 Hz. What
    14·1 answer
  • If you are driving 95 km/h along a straight road and you look to the side for 2.0s, how far do you travel during this inattentiv
    13·1 answer
  • A transformer connected to a 120-V (rms) ac line is to supply 13,000 V (rms) for a neon sign. To reduce shock hazard, a fuse is
    7·1 answer
  • The figure shows a system of five objects. Determine the magnitude of the gravitational force acting on the
    9·1 answer
  • A glass of water sitting in direct sunlight evaporates over time. Explain this phase change in terms of the types of heat transf
    7·2 answers
  • A regulation soccer field for international play is a rectangle with a length between 100 m and a width between 64 m and 75 m. W
    6·2 answers
  • The brake shoes of your car are made of a material that can tolerate very high temperatures without being damaged. Why is this s
    11·1 answer
  • Question 16 of 25
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!