1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ivanshal [37]
3 years ago
14

Exercise 5.Water flows in a vertical pipe of 0.15-m diameter at a rate of 0.2 m3/s and a pressureof 275 kPa at an elevation of 2

5 m. Determine the velocity head and pressure head at elevations of20 and 55 m.
Engineering
2 answers:
lozanna [386]3 years ago
6 0

Answer:

Pressure head at point 1 (P1/√w) = 28.04m

velocity head at point 1

V1²/2g = 6.51m

Pressure head at point 3 (P3/√w) = -6.96m

velocity head at point 3 (V3²/2g) = 6.51m

Explanation:

Given details

pipe diameter = 0.15-m

volume flow rate = 0.2 m3/s

pressure of flow = 275 kPa

Heads = 25m, 20m, 55m

√ = specific density

V = Velocity

A= Area

When water flows through vertical pipe, it will consists of three point which are;

Point 1: Point of entry of water

Point 2: Point above the entry point inside the pipe

Point 3: Point at which the water exit the pipe.

Point 1

Using continuity equation

Velocity at point 1 V1 = ∆V/A

But A = πd²/4 = π*0.15²/4 = 0.0177m³

V1 = 0.2/0.0177 = 11.30m/s

Using Bernoulli's equation between point 1 and 2 to get pressure head at point point 1

(P1/√w) + (V1²/2g) + Z1 = (P2/√w) + (V2²/2g) + Z2

Note that the Velocity head at point 1 and 2 are equal and thus the Velocity components are nullified.

(P1/√w) + 20 = (275*10³/2*9.81) + 25

(P1/√w) = (275*10³/2*9.81) + (25 - 20)

(P1/√w) = (275*10³/2*9.81) + 5

(P1/√w) = 28038mm = 28.04m

Pressure head at point 1 (P1/√w) = 28.04m

For velocity head at point 1

V1²/2g = 11.30²/2*9.18 = 6.51m

Point 2

Using Bernoulli's equation between point 1 and 3 to get pressure head at point point 1

(P1/√w) + (V1²/2g) + Z1 = (P3/√w) + (V3²/2g) + Z3

Velocity components are nullified and thus;

28.04. + 20 = (P3/√w) + 55

(P3/√w) = 28.04 + 20 - 55

P3/√w) = -6.96m

Pressure head at point 3 (P3/√w) = -6.96m

And the velocity components of this can be find by using continuity equation

(V1²/2g) = (V3²/2g)

(V3²/2g) = 6.51m

Thus, it means that Velocity head at point of entry is the same as that of exist.

wariber [46]3 years ago
4 0

Answer:

a. Pressure head: 33.03,

Velocity Head: 6.53

b. Pressure Head: -1.97,

Velocity Head: 6.53

Explanation:

a.

Given

Diameter = 0.15-m, radius = 0.075

rate = 0.2 m3/s

Pressure =275 kPa

elevation =25 m.

We'll consider 3 points as the water flow through the pipe

1. At the entrance

2. Inside the pipe

3. At the exit

At (1), the velocity can be found using continuity equation.

V1 = ∆V/A

Where A = Area = πr² = π(0.075)² = 0.017678571428571m²

V1 = 0.2/0.017678571428571

V1 = 11.32 m/s

The value of pressure at point 1, is given by Bernoulli equation between point 1 and 2:

P1/yH20 + V1²/2g + z1 = P2/yH20 + V2²/2g + z2

Substitute in the values

P1/yH20 + 20 = (275 * 10³Pa)/yH20 + 25

P1/yH20 = (275 * 10³Pa)/yH20 + 25 - 25

=> P1/yH20 = (275/9.81 + 5)

P1/yH20 = 33.03

The velocity head at point one is then given by

V2²/2g = 11.32²/2 * 9.8

V2²/2g = 6.53

b.

The value of pressure at point 1, is given by Bernoulli equation between point 1 and 3:

P1/yH20 + V1²/2g + z1 = P3/yH20 + V3²/2g + z3

Substitute in the values

33.03 + 20 = P3/yH20 + 55

P3/yH20 = 33.03 + 20 - 55

=> P1/yH20 = -1.97

The velocity head at point three is then given by

V2²/2g = V3²/2g = 6.53

You might be interested in
What is the maximal coefficient of performance of a refrigerator which cools down 10 kg of water (and then ice) to -6C. Upper he
inysia [295]

Given:

Temperature of water, T_{1} = -6^{\circ}C =273 +(-6) =267 K

Temperature surrounding refrigerator, T_{2} = 21^{\circ}C =273 + 21 =294 K

Specific heat given for water, C_{w} = 4.19 KJ/kg/K

Specific heat given for ice, C_{ice} = 2.1 KJ/kg/K

Latent heat of fusion,  L_{fusion} = 335KJ/kg

Solution:

Coefficient of Performance (COP) for refrigerator is given by:

Max COP_{refrigerator} = \frac{T_{2}}{T_{2} - T_{1}}

= \frac{267}{294 - 267} = 9.89

Coefficient of Performance (COP) for heat pump is given by:

Max COP_{heat pump} = \frac{T_{1}}{T_{2} - T_{1}}\frac{294}{294 - 267} = 10.89

6 0
3 years ago
The AGC control voltage: ___________
lyudmila [28]

Answer:

The AGC circuit operates with an input voltage range of 60 dB (5 mV p-p to 5 V p-p), with a fixed output voltage of 250 mV p-p.

Explanation:

3 0
2 years ago
What are some common work contexts for Licensing Examiners and Inspectors? Select four options.
Akimi4 [234]

According to O*NET, the common work contexts for Licensing Examiners and Inspectors include:

  1. Telephone
  2. Face-to-face discussions
  3. Contact with others
  4. Importance of being exact or accurate.

O*NET is an acronym for occupational information network and it refers to a free resource center or online database that is updated from time to time with several occupational definitions, so as to help the following categories of people understand the current work situation in the United States of America:

  • Workforce development professionals
  • Students
  • Human resource (HR) managers
  • Job seekers
  • Business firms

On O*NET, work contexts are typically used to describe the physical and social elements that are common to a particular profession or occupational work. Also, the less common work contexts are listed toward the bottom while common work contexts are listed toward the top.

According to O*NET, the common work contexts for Licensing Examiners and Inspectors include:

1. Telephone

2. Face-to-face discussions

3. Contact with others

4. Importance of being exact or accurate.

Read more on work contexts here: brainly.com/question/22826220

6 0
2 years ago
Read 2 more answers
How much power do a capacitor and inductor dissipate? Assume the capacitor/inductor have no parasitic resistance (no resistor in
Mariana [72]
They do in fact heat up while receiving energy.
4 0
2 years ago
What is the braks mean effictive pressure?
OverLord2011 [107]

Engine cylinder pressure

<u>Explanation:</u>

  1. Brake mean effective pressure is a method to calculate  the engine cylinder pressure which  would give the measured brake horsepower. Brake mean effective pressure is used to identify engine efficiency regardless of capacity or engine speed.
  2. It is used to identify engine efficiency.It is measured by means of transducers or pressure gauges.
  3. It is the measure of engine capacity to do work.

7 0
3 years ago
Other questions:
  • A large well-mixed tank of unknown volume, open to the atmosphere initially, contains pure water. The initial height of the solu
    12·1 answer
  • A 356 cast aluminum test bar is tested in tension. The initial gage length as marked on the sample is 50mm and the initial diame
    9·1 answer
  • An electric current of transports of charge. Calculate the time this took. Be sure your answer has the correct unit symbol and s
    5·1 answer
  • Help Please!!!!!!!<br><br> Whatever3443<br> Please help!
    9·2 answers
  • Why is the lubrication system of an internal combustion engine equipped with an oil filter?
    11·1 answer
  • A common chef's knife is single-beveled.<br> TRUE<br> FALSE
    10·1 answer
  • if you help then I will thank u by sooo much I will give tons of points but the answer has to be right.
    14·2 answers
  • A front wheel drive vehicle with four wheel disc brakes is pulling to the left. Tech A says an external kink or internal restric
    13·1 answer
  • Which component found in fertilizer is a known cancer-causing agent?
    11·2 answers
  • Contrast the electron and hole drift velocities through a 10 um (micro meter) layer of intrinsic silicon across which a voltage
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!