The answer is choice C
Explanation:
As during construction ,the site is cleared for all debris before laying out the foundation. Even the sewer lines are dug out .
So it will be useful for the construction crews to connect the pipes to the sewer lines before the foundation is poured.
But usually the steps take in construction activity is:- first the site is cleared for the foundation to be poured and once the foundation wall is set , then all utilities , including plumbing and electrical activities are done.,
After this process is over, the city inspector comes to check whether the foundation has been laid down as per the code of construction.
Only after that the rest of the construction activity follows through.
Answer:
Engineers are a very beneficial contribution in which offers great solutions to national problems.
Answer:
Engineers can design a train with a regenerative braking system
Explanation:
Assuming the point of the question is that the engineers want to focus on using energy efficiently when starting and stopping, they would likely want to consider a regenerative braking system. Such a system can store energy during braking so that it can be used during starting, reducing the amount of energy that must be supplied by an outside power source.
Answer:
R = 31.9 x 10^(6) At/Wb
So option A is correct
Explanation:
Reluctance is obtained by dividing the length of the magnetic path L by the permeability times the cross-sectional area A
Thus; R = L/μA,
Now from the question,
L = 4m
r_1 = 1.75cm = 0.0175m
r_2 = 2.2cm = 0.022m
So Area will be A_2 - A_1
Thus = π(r_2)² - π(r_1)²
A = π(0.0225)² - π(0.0175)²
A = π[0.0002]
A = 6.28 x 10^(-4) m²
We are given that;
L = 4m
μ_steel = 2 x 10^(-4) Wb/At - m
Thus, reluctance is calculated as;
R = 4/(2 x 10^(-4) x 6.28x 10^(-4))
R = 0.319 x 10^(8) At/Wb
R = 31.9 x 10^(6) At/Wb
What am I going to select?? What are my choices bro????