Answer:
a)temperature=69.1C
b)3054Kw
Explanation:
Hello!
To solve this problem follow the steps below, the complete procedure is in the attached image
1. draw a complete outline of the problem
2. to find the temperature at the turbine exit use termodinamic tables to find the saturation temperature at 30kPa
note=Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)
through prior knowledge of two other properties such as pressure and temperature.
3. Using thermodynamic tables find the enthalpy and entropy at the turbine inlet, then find the ideal enthalpy using the entropy of state 1 and the outlet pressure = 30kPa
4. The efficiency of the turbine is defined as the ratio between the real power and the ideal power, with this we find the real enthalpy.
Note: Remember that for a turbine with a single input and output, the power is calculated as the product of the mass flow and the difference in enthalpies.
5. Find the real power of the turbine
Answer:
The flux (volume of water per unit time) through the hoop will also double.
Explanation:
The flux = volume of water per unit time = flow rate of water through the hoop.
The Flow rate of water through the hoop is proportional to the area of the hoop, and the velocity of the water through the hoop.
This means that
Flow rate = AV
where A is the area of the hoop
V is the velocity of the water through the hoop
This flow rate = volume of water per unit time = Δv/Δt =Q
From all the above statements, we can say
Q = AV
From the equation, if we double the area, and the velocity of the stream of water through the hoop does not change, then, the volume of water per unit time will also double or we can say increases by a factor of 2
Answer: A, B, C & F (interacting w computers, making decisions & solving problems, evaluating information & getting information).
Explanation: Those are the correct & verified answers.