Answer:
B
Explanation:
only the radius of the circle as a result of shear strain change.
Answer:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Explanation:
Calculation to estimate the upper and lower bounds of the modulus of this composite.
First step is to calculate the maximum modulus for the combined material using this formula
Modulus of Elasticity for mixture
E= EcuVcu+EwVw
Let pug in the formula
E =( 110 x 0.40)+ (407 x 0.60)
E=44+244.2 GPa
E=288.2GPa
Second step is to calculate the combined specific gravity using this formula
p= pcuVcu+pwTw
Let plug in the formula
p = (19.3 x 0.40) + (8.9 x 0.60)
p=7.72+5.34
p=13.06
Now let calculate the UPPER BOUNDS and the LOWER BOUNDS of the Specific stiffness
UPPER BOUNDS
Using this formula
Upper bounds=E/p
Let plug in the formula
Upper bounds=288.2/13.06
Upper bounds=22.07 GPa
LOWER BOUNDS
Using this formula
Lower bounds=EcuVcu/pcu+EwVw/pw
Let plug in the formula
Lower bounds =( 110 x 0.40)/8.9+ (407 x 0.60)/19.3
Lower bounds=(44/8.9)+(244.2/19.3)
Lower bounds=4.94+12.65
Lower bounds=17.59 GPa
Therefore the Estimated upper and lower bounds of the modulus of this composite will be:
Upper bounds 22.07 GPa
Lower bounds 17.59 GPa
Answer:
(a) Increases
(b) Increases
(c) Increases
(d) Increases
(e) Decreases
Explanation:
The tensile modulus of a semi-crystalline polymer depends on the given factors as:
(a) Molecular Weight:
It increases with the increase in the molecular weight of the polymer.
(b) Degree of crystallinity:
Tensile strength of the semi-crystalline polymer increases with the increase in the degree of crystallinity of the polymer.
(c) Deformation by drawing:
The deformation by drawing in the polymer results in the finely oriented chain structure of the polymer with the greater inter chain secondary bonding structure resulting in the increase in the tensile strength of the polymer.
(d) Annealing of an undeformed material:
This also results in an increase in the tensile strength of the material.
(e) Annealing of a drawn material:
A semi crystalline material which is drawn when annealed results in the decreased tensile strength of the material.
Answer:
theoretical fracture strength = 16919.98 MPa
Explanation:
given data
Length (L) = 0.28 mm = 0.28 × 10⁻³ m
radius of curvature (r) = 0.002 mm = 0.002 × 10⁻³ m
Stress (s₀) = 1430 MPa = 1430 × 10⁶ Pa
solution
we get here theoretical fracture strength s that is express as
theoretical fracture strength =
.............................1
put here value and we get
theoretical fracture strength =
theoretical fracture strength =
theoretical fracture strength = 16919.98 MPa
The lightning efficiency based on the scenario depicted will be C. 56 lumens/Watt, more efficient.
<h3>How to calculate the lightning efficiency</h3>
The efficiency of the incandescent bulb will be:
= 450/40 = 11.25 lumens per watt.
The efficiency of the LED bulb will be:
= 450/8 = 56 lumens per watt.
In this case, the LED bulb is more efficient than the incandescent bulb.
Therefore, the lighting efficiency will be 56 lumens/Watt, more efficient
Learn more lightning efficiency on:
brainly.com/question/25927632