Answer:
Bottom-up Estimation
Explanation:
Bottom-up estimation is a type of project cost estimation that considers the cost of individual project activities and finally sums them up or finds the aggregates. The summation gives an idea of what the entire project will cost.
This is an effective way of estimating the cost of a project as it evaluates the costs on a wholistic basis. It also considers the tiniest details during the estimation process. The process moves from the simpler details to the more complicated details.
Answer:
I'll play
Explanation:
I'm insane like so good at it
The first thing you should do is develop a <u>budget</u> to determine what vehicle you can afford.
<h3>What is an automobile?</h3>
An automobile is also referred to as a vehicle, car or motorcar and it can be defined as a four-wheeled vehicle that is designed and developed to be propelled by an internal-combustion (gasoline) engine, especially for the purpose of transportation from one location to another.
<h3>What is a budget?</h3>
A budget can be defined as a financial plan that is typically used for the estimation of revenue and expenditures of an individual, business organization or government for a specified period of time, often one year.
In this context, we can reasonably infer and logically deduce that the first thing anyone should do is to develop a <u>budget</u> in order to determine what vehicle they can afford.
Read more on budget here: brainly.com/question/13964173
#SPJ1
70% of the chances you a car be a because if you see or 40° 51 5030 minutes and to 70% can be ignored to kinetic energy
Answer:
<em>866.1 N</em>
Explanation:
The torque on the flywheel = 300 N-m
The force from the hydraulic cylinder will generate a moment on CA about point A.
The part of this moment that will be at point B about A must be proportional to the torque on the cylinder which is 300 N-m
we know that moment = F x d
where F is the force, and
d is the perpendicular distance from the turning point = 1 m
Equating, we have
300 = F x 1
F = 300 N this is the frictional force that stops the flywheel
From F = μN
where F is the frictional force
μ is the coefficient of static friction = 0.4
N is the normal force from the hydraulic cylinder
substituting, we have
300 = 0.4 x N
N = 300/0.4 = 750 N
This normal force calculated is perpendicular to CA. This actual force, is at 30° from the horizontal. To get the force from the hydraulic cylinder R, we use the relationship
N = R sin (90 - 30)
750 = R sin 60°
750 = 0.866R
R = 750/0.866 = <em>866.1 N</em>