Answer:
Thermal energy typically flows from a warmer material to a cooler material. Generally, when thermal energy is transferred to a material, the motion of its particles speeds up and its temperature increases. There are three methods of thermal energy transfer: conduction, convection, and radiation.
Explanation:
ion know...
Answer: V = 3.4 L
Explanation: Use Boyle's Law to find the new volume. P1V1 = P2V2, derive for V2, then the formula will be V2= P1V1 / P2
V2 = 2.5 atm ( 4.5 L ) / 3.3 atm
= 3.4 L
Answer:
Explanation:
The formula for this, the easy one, is
where No is the initial amount of the element, t is the time in years, and H is the half life. Filling in:
and simplifying a bit:
and
N = 48.0(.0625) so
N = 3 mg left after 12.3 years
Answer:
Explanation:
The change is as follows
P₁ V₁ to 3P₁, V₁ ( constt volume ) --- first process
3P₁,V₁ to 3P₁ , 5V₁ ( constt pressure ) ---- second process
In the first process Temperature must have been increased 3 times . So if initial temperature is T₁ then final temperature will be 3 T₁
P₁V₁ = n R T₁ , n is no of moles of gas enclosed.
nRT₁ = P₁V₁
Heat added at constant volume = n Cv ( 3T₁ - T₁)
= n x 5/3 R X 2T₁ ( for diatomic gas Cv = 5/3 R)
= 10/3 x nRT₁
= 10/3x P₁V₁
In the second process, Temperature must have been increased 5 times . So if initial temperature is 3T₁ then final temperature will be 15 T₁
Heat added at constant pressure in second case
= n Cp ( 15T₁ - 3T₁)
= n x 7/3 R X 12T₁ ( For diatomic gas Cp = 7/3 R)
= 28 x nRT₁
= 28 P₁V₁