Answer:
a) The velocity of the car is 7.02 m/s and the car is approaching to the police car as the frequency of the police car is increasing.
b) The frequency is 1404.08 Hz
Explanation:
If the police car is a stationary source, the frequency is:
(eq. 1)
fs = frequency of police car = 1200 Hz
fa = frequency of moving car as listener
v = speed of sound of air
vc = speed of moving car
If the police car is a stationary observer, the frequency is:
(eq. 2)
Now,
fL = frequecy police car receives
fs = frequency police car as observer
a) The velocity of car is from eq. 2:

b) Substitute eq. 1 in eq. 2:

Answer:
a

b

Explanation:
From the question we are told that
The wavelength of the light is 
The distance of the slit separation is 
Generally the condition for two slit interference is

Where m is the order which is given from the question as m = 2
=> ![\theta = sin ^{-1} [\frac{m \lambda}{d} ]](https://tex.z-dn.net/?f=%5Ctheta%20%20%3D%20%20sin%20%5E%7B-1%7D%20%5B%5Cfrac%7Bm%20%5Clambda%7D%7Bd%7D%20%5D)
substituting values

Now on the second question
The distance of separation of the slit is

The intensity at the the angular position in part "a" is mathematically evaluated as
![I = I_o [\frac{sin \beta}{\beta} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%5Cbeta%7D%7B%5Cbeta%7D%20%5D%5E2)
Where
is mathematically evaluated as

substituting values


So the intensity is
![I = I_o [\frac{sin (0.06581)}{0.06581} ]^2](https://tex.z-dn.net/?f=I%20%20%3D%20%20I_o%20%20%5B%5Cfrac%7Bsin%20%280.06581%29%7D%7B0.06581%7D%20%5D%5E2)

Answer:
Kinetic energy is the energy due to motion. Potential energy is energy stored in matter. The joule (J) is the SI unit of energy and equals (kg×m2s2) ( kg × m 2 s 2 ) .
please mark me brainliest and follow me my friend.
Answer: a) 274.34 nm; b) 1.74 eV c) 1.74 V
Explanation: In order to solve this problem we have to consider the energy balance for the photoelectric effect on tungsten:
h*ν = Ek+W ; where h is the Planck constant, ek the kinetic energy of electrons and W the work funcion of the metal catode.
In order to calculate the cutoff wavelength we have to consider that Ek=0
in this case h*ν=W
(h*c)/λ=4.52 eV
λ= (h*c)/4.52 eV
λ= (1240 eV*nm)/(4.52 eV)=274.34 nm
From this h*ν = Ek+W; we can calculate the kinetic energy for a radiation wavelength of 198 nm
then we have
(h*c)/(λ)-W= Ek
Ek=(1240 eV*nm)/(198 nm)-4.52 eV=1.74 eV
Finally, if we want to stop these electrons we have to applied a stop potental equal to 1.74 V . At this potential the photo-current drop to zero. This potential is lower to the catode, so this acts to slow down the ejected electrons from the catode.
Answer:
F = 351×10³lb
Explanation:
Given the density
ρg = 64.6lb/ft³
Diameter d = 12ft
The tank is horizontally cylindrical. The vertical distance from the top to the bottom of the tank is h = 12ft
The pressure in the tank is
P = ρgh = 64.6 × 12 = 775.2lb/ft²
The force exerted on one end of the tank is therefore F = PA = 775.2 × πd² = 775.2π×12²
F = 351×10³lb.