(1) The harmonic number for the mode of oscillation is 3.
(2) The pitch (frequency) of the sound is 579.55 Hz
(3) The level of the water inside the vertical pipe is 0.1 m.
<h3>The harmonic number</h3>
The harmonic number for the mode of oscillation illustrated for the closed pipe is 3.
<h3>Frequency of the wave</h3>
The pitch (frequency) of the sound is calculated from third harmonic formula;
f = 3v/4L
where;
- v is speed of sound
- L is length of the pipe
f = (3 x 340) / (4 x 0.44)
f = 579.55 Hz
<h3>level of the water</h3>
wave equation for first harmonic of a closed pipe is given as
f = v/(4L)
251.1 = 340/(4L)
4L = 340/251.1
4L = 1.35
L = 1.35/4
L = 0.34 m
level of water = 0.44 m - 0.34 m = 0.1 m
Thus, the level of the water inside the vertical pipe is 0.1 m.
Learn more about harmonics of closed pipes here: brainly.com/question/27248821
#SPJ1
Answer:
(a) The energy of the photon is 1.632 x
J.
(b) The wavelength of the photon is 1.2 x
m.
(c) The frequency of the photon is 2.47 x
Hz.
Explanation:
Let;
= -13.60 ev
= -3.40 ev
(a) Energy of the emitted photon can be determined as;
-
= -3.40 - (-13.60)
= -3.40 + 13.60
= 10.20 eV
= 10.20(1.6 x
)
-
= 1.632 x
Joules
The energy of the emitted photon is 10.20 eV (or 1.632 x
Joules).
(b) The wavelength, λ, can be determined as;
E = (hc)/ λ
where: E is the energy of the photon, h is the Planck's constant (6.6 x
Js), c is the speed of light (3 x
m/s) and λ is the wavelength.
10.20(1.6 x
) = (6.6 x
* 3 x
)/ λ
λ = 
= 1.213 x 
Wavelength of the photon is 1.2 x
m.
(c) The frequency can be determined by;
E = hf
where f is the frequency of the photon.
1.632 x
= 6.6 x
x f
f = 
= 2.47 x
Hz
Frequency of the emitted photon is 2.47 x
Hz.
Answer:
i mean i would think solar engery example solar panels
Explanation:
man i tried for you sorry if i wasnt much help
Efficiency = Power Output / Power Input
Power Input = Rate of Energy input = 44.4 MJ/kg * 5 kg/h
= 222 MJ/h
But 1 hour = 3600seconds
222 MJ/h = 222 MJ/3600s = 0.061667 MW J/s = Watts
Power input = 0.061667 MW = 61 667 W
From Efficiency = Power Output / Power Input
28% = Power Output / 61667
Power Output = 0.28 * 61667
Power Output = 17266.76 W
Power Output ≈ 17 267 W
Rate of heat rejection = Power Input - Power Output
= 61667 - 17267 = 44400 W
Rate of heat rejection = 44 400W.