1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
12

This morning Greg’s car had 25.25 of fuel now 1.4 gallons are left how much fuel did Greg use

Mathematics
1 answer:
tensa zangetsu [6.8K]3 years ago
8 0

Answer:23.85

Step-by-step explanation:

You might be interested in
Why does it takes 3 copies of 1/6 to show the same amount as 1copy of 1 / 2
Veseljchak [2.6K]
Because 1/2 ≠ 1/6.

We know that 1/6 < 1/2, so we can set up an equation to see how many copies are needed for them to be equal.

(1/6)x = 1/2
[(1/6)x] × 6 = [1/2] × 6
x = 6/2 = 3

This equation shows that 1/6 × 3 = 1/2, therefore we need 3 copies of 1/6 to equal 1 copy of 1/2.
3 0
3 years ago
Read 2 more answers
Solve for X <br><br>Explain if possible :)
sweet-ann [11.9K]

The two labeled angles are alternate interior angles, and as such, they are the same.

From this result you can build the equation

15x-2 = 13x+2

and solve it for x: subtract 13x from both sides to get

2x-2=2

and add 2 to both sides to get

2x = 4 \implies x = 2

Check: if we plug the value we found we have

13\cdot 2 + 2 = 26+2 = 28 = 15\cdot 2 - 2 = 30-2

So the angles are actually the same, as requested.

4 0
3 years ago
13. En un pueblo, 5 personas escucharon una noticia. En una hora, cada una de ellas
Vera_Pavlovna [14]

Answer:

En 5 horas se habrá enterado todo el pueblo.

Step-by-step explanation:

Sabemos que en un pueblo 5 personas escucharon una noticia.

Una hora más tarde, cada una de ellas le contó la noticia a otras 5.

Luego, éstas contaron la noticia a otras 5 y así sucesivamente.

Nadie cuenta ni escucha la noticia más de una vez y en ese pueblo hay un poco más de 19000 habitantes.

La ecuación a desarrollar para resolver el problema es la siguiente :

Comenzamos con 5 personas que escucharon la noticia a la ''hora 0''.

Una hora más tarde, cada una de ellas le contó a 5 personas, es decir , pasada la primera hora tendremos :

5+5^{2}=30 (I)

Las 5 personas originales de la ''hora 0'' más 25 personas que se enteraron pasada la primera hora. La ecuación que planteamos es la siguiente :

5^{1}+5^{2}+5^{3}+...+5^{x}>19000 (II)

Buscamos el valor de x que satisface la ecuación (II).

Probando y realizando las sumas encontramos que :

5^{1}+5^{2}+5^{3}+5^{4}+5^{5}+5^{6}>19000

19530>19000

El valor de x que satisface (II) es x=6.

Para hallar el número de horas nos fijamos que en (I) el valor del mayor exponente del 5 es el número 2. Para ese valor 2, el tiempo que pasó es una hora.

Entonces para nuestro x=6, el número de horas que pasaron son 5 horas (1 menos que el valor de x)

Todo el pueblo se habrá enterado en 5 horas de la noticia.

7 0
4 years ago
In early 2012, the Pew Internet and American Life Project asked a random sample of U.S. adults, "Do you ever ... use Twitter or
8090 [49]

Answer:

The confidence interval for the mean is given by the following formula:  

\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}

And the confidence interval is given by:

(0.123, 0.177)

And for this case the interval contains the value 0.16, so then we can conclude at 5% of significance that the true proportion is not different from 0.16

Step-by-step explanation:

Previous concepts

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

The population proportion have the following distribution

p \sim N(p,\sqrt{\frac{p(1-p)}{n}})

Solution to the problem

In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 95% of confidence, our significance level would be given by \alpha=1-0.95=0.05 and \alpha/2 =0.025. And the critical value would be given by:

z_{\alpha/2}=-1.96, z_{1-\alpha/2}=1.96

The confidence interval for the mean is given by the following formula:  

\hat p \pm z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}

And the confidence interval is given by:

(0.123, 0.177)

And for this case the interval contains the value 0.16, so then we can conclude at 5% of significance that the true proportion is not different from 0.16

3 0
4 years ago
Who can help me with this worksheet ASAP need it for my tomorrow and I have a lot of homework to do please someone help me
RUDIKE [14]

Answer:

  1. 5n square root 5
  2. 6 square root 6v
  3. 16ki square root 2
  4. 10m square root m
  5. 4p square root 5p
  6. 3pi square root 5


6 0
3 years ago
Other questions:
  • Given f(x)= (x-5)/3, solve for f^-1(3)
    11·1 answer
  • Please help asap thank you
    11·1 answer
  • Solve the system of equations.<br> – 3y +51 = 26<br> – 2y - 51 = -16
    10·2 answers
  • Use row reduction to find the inverse of the given matrix if it exists, and check your answer by multiplication. hint [see examp
    5·1 answer
  • What is the least common denominator of the fraction 7 over 3 x plus the fraction 2 over x plus the fraction x over x minus 1?
    15·1 answer
  • Can anyone answer these 4?
    12·1 answer
  • Helppppppppppppppppppppppppppppppppppppppppppppppppppp
    6·1 answer
  • Each numbers belongs in a location on the number line
    7·1 answer
  • Imagine your friend uses long division to determine the quotients, and is confused by how quickly you
    9·2 answers
  • HELP Me please whoever knows this
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!