1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Llana [10]
3 years ago
10

Which of the following values represents an index of refraction of an actual material?

Physics
1 answer:
serg [7]3 years ago
3 0

Sadly, we're forced to answer the question without the benefit of the
list of choices, which, for some reason, you decided not to let us see.

Index of refraction of a substance =

               (speed of light in vacuum) / (speed of light in the substance).

Any number greater than  ' 1 ' can be an index of refraction.  A number
less than ' 1 ' can't be . . . that would be saying that the speed of light
in this substance is greater than the speed of light in vacuum.

You might be interested in
jet is flying at 500 mph east relative to the ground. A Cessna is flying at 150 mph 60° north of west relative to the ground. Wh
Greeley [361]

Answer:

C. 590 mph

\vert v_{cj}\vert=589.49\ mph

Explanation:

Given:

  • velocity of jet, v_j=500\ mph
  • direction of velocity of jet, east relative to the ground
  • velocity of Cessna, v_c=150\ mph
  • direction of velocity of Cessna, 60° north of west

Taking the x-axis alignment towards east and hence we have the velocity vector of the jet as reference.

Refer the attached schematic.

So,

\vec v_j=500\ \hat i\ mph

&

\vec v_c=150\times (\cos120\ \hat i+\sin120\ \hat j)

\vec v_c=-75\ \hat i+75\sqrt{3}\ \hat j\ mph

Now the vector of relative velocity of Cessna with respect to jet:

\vec v_{cj}=\vec v_j-\vec v_c

\vec v_{cj}=500\ \hat i-(-75\ \hat i+75\sqrt{3}\ \hat j )

\vec v_{cj}=575\ \hat i-75\sqrt{3}\ \hat j\ mph

Now the magnitude of this velocity:

\vert v_{cj}\vert=\sqrt{(575)^2+(75\sqrt{3} )^2}

\vert v_{cj}\vert=589.49\ mph is the relative velocity of Cessna with respect to the jet.

8 0
3 years ago
The material or substance that a wave moves through is called a ____
pshichka [43]
1. medium
2. Type
3. Temperature

Just took the quiz
7 0
3 years ago
Read 2 more answers
An object with velocity 141 ft/s has a kinetic energy of 1558.71 ft∙lbf, on a planet whose gravity is 31.5 ft/s2. What is its
Sidana [21]

Answer:

The mass of the object is 5.045 lbm.

Explanation:

Given;

kinetic energy of the object, K.E = 1558.71 ft.lbf

velocity of the object, V = 141 ft/s

The kinetic energy of the object is calculated as;

K.E = \frac{1}{2} mV^2\\\\mV^2 = 2K.E\\\\m = \frac{2K.E}{V^2} \\\\1 \ lbf = 32.174 \ lbm.ft/s^2\\\\m  = \frac{2 \ \times \ 1558.71 \ ft.lbf \ \times \ 32.174 \ lbm.ft/s^2 }{(141 \ ft/s)2 \ \  \times \ \ \ \ 1   \ lbf\ }

m  = \frac{(2 \ \times \ 1558.71  \ \times \ 32.174) \ lbm.ft^2/s^2 }{(141 )^2\ ft^2/s^2 }\\\\m = \frac{(2 \ \times \ 1558.71  \ \times \ 32.174) \ lbm }{(141 )^2 }\\\\m = 5.045 \ lbm

Therefore, the mass of the object is 5.045 lbm.

6 0
3 years ago
Please help me question 8
Rudik [331]
I beleive that the answer is B.
7 0
3 years ago
Tests reveal that a normal driver takes about 0.75 s before he or she can react to a situation to avoid a collision. It takes ab
nata0808 [166]

To solve this problem we will apply the linear motion kinematic equations. On these equations we will define the speed as the distance traveled in a space of time, and that speed will be in charge of indicating the reaction rate of the individual. In turn, using the ratio of speed, position and acceleration, we will clear the position and determine the distance necessary for braking.

The relation to express the velocity in terms of position for constant acceleration is as follows

v^2 = u^2+2a(s-s_0)

Here,

u = Initial velocity

v= Final velocity

a = Acceleration

s_0 = Initial position

s = Final position

PART 1) Calculate the displacement within the reaction time

d = vt

d = (44)(0.75)

d = 33ft

In this case we can calculate the shortest stopping distance

0^2 = 44^2+2(-2)(s-33)

s = 517ft

PART 2)

PART 1) Calculate the displacement within the reaction time

d = vt

d = (44)(3)

d = 132ft

In this case we can calculate the shortest stopping distance

0^2 = 44^2+2(-2)(s-132)

s = 616ft

While a person without alcohol would cost 517ft to slow down, under alcoholic substances that distance would be 616ft

7 0
3 years ago
Other questions:
  • On the moon the acceleration due to gravity is only 1.6 m/s2 if someone on earth can throw a baseball 24.2 m high how high could
    9·1 answer
  • How to measure the speed of sound in air?
    9·2 answers
  • A car is raised on a lift at a service station (so it has some amount of gravitational potential energy relative to the ground).
    15·1 answer
  • To change from one SI prefix to another, we use?
    9·2 answers
  • Introduction to conductors and insulators and electrification processes. Please
    12·1 answer
  • An electric heater is rated at 1400 W, a toaster is rated at 1150 W, and an electric grill is rated at 1560 W. The three applian
    14·1 answer
  • Nancy needs to do a scientific investigation for her class. She is interested in pottery, plants, and basketball. Which of the f
    7·2 answers
  • two bowling balls each have a mass of 8kg. if they are 2 m apart, what is the gravitational force between them?
    15·1 answer
  • 16. Olympic ice skaters are able to spin at about 5 rev/s.
    6·1 answer
  • onsidering light at the two ends of the visible light spectrum, violet light has a _____ wavelength and a _____ photon energy th
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!