Answer:
-6112.26 J
Explanation:
The initial kinetic energy,
is given by
} where m is the mass of a body and
is the initial velocity
The final kinetic energy,
is given by
where
is the final velocity
Change in kinetic energy,
is given by

Since the skater finally comes to rest, the final velocity is zero. Substituting 0 for
and 12.6 m/s for
and 77 Kg for m we obtain

From work energy theorem, work done by a force is equal to the change in kinetic energy hence for this case work done equals <u>-6112.26 J</u>
Answer:
Ф_cube /Ф_sphere = 3 /π
Explanation:
The electrical flow is
Ф = E A
where E is the electric field and A is the surface area
Let's shut down the electric field with Gauss's law
Фi = ∫ E .dA =
/ ε₀
the Gaussian surface is a sphere so its area is
A = 4 π r²
the charge inside is
q_{int} = Q
we substitute
E 4π r² = Q /ε₀
E = 1 / 4πε₀ Q / r²
To calculate the flow on the two surfaces
* Sphere
Ф = E A
Ф = 1 / 4πε₀ Q / r² (4π r²)
Ф_sphere = Q /ε₀
* Cube
Let's find the side value of the cube inscribed inside the sphere.
In this case the radius of the sphere is half the diagonal of the cube
r = d / 2
We look for the diagonal with the Pythagorean theorem
d² = L² + L² = 2 L²
d = √2 L
we substitute
r = √2 / 2 L
r = L / √2
L = √2 r
now we can calculate the area of the cube that has 6 faces
A = 6 L²
A = 6 (√2 r)²
A = 12 r²
the flow is
Ф = E A
Ф = 1 / 4πε₀ Q/r² (12r²)
Ф_cubo = 3 /πε₀ Q
the relationship of these two flows is
Ф_cube /Ф_sphere = 3 /π
<h3><u>Question</u><u>:</u></h3>
A racing car is travelling at 70 m/s and accelerates at -14 m/s^2. What would the car’s speed be after 3 s?
<h3><u>Statement:</u></h3>
A racing car is travelling at 70 m/s and accelerates at -14 m/s^2.
<h3><u>Solution</u><u>:</u></h3>
- Initial velocity (u) = 70 m/s
- Acceleration (a) = -14 m/s^2
- Time (t) = 3 s
- Let the velocity of the car after 3 s be v m/s
- By using the formula,
v = u + at, we have

- So, the velocity of the car after 3 s is 28 m/s.
<h3><u>Answer:</u></h3>
The car's speed after 3 s is 28 m/s.
Hope it helps