Answer:
the thermistor temperature = 
Explanation:
Given that:
A thermistor is placed in a 100 °C environment and its resistance measured as 20,000 Ω.
i.e Temperature
Resistance of the thermistor
20,000 ohms
Material constant
= 3650
Resistance of the thermistor
= 500 ohms
Using the equation :


Taking log of both sides





Replacing our values into the above equation :






Thus, the thermistor temperature = 
<span>Pice=920kg/m^3
deltaP=PgH=920kg/m^3 X 9.80665m/s^2 X 1000m = 9022118 Pa
P=Po + deltaP=101.325 + 9022 = 9123kPa</span>
Answer:
86605.08 N
Explanation:
The equation to calculate the force is:
Force = mass * acceleration
The force and the acceleration does not have the same direction in this case, so we need to decompose the force into its horizontal component, which is the force that will generate the horizontal acceleration:
Force_x = Force * cos(30)
Then, we have that:
Force_x = mass * acceleration
Force * cos(30) = 25000 * 3
Force * 0.866 = 75000
Force = 75000 / 0.866 = 86605.08 N
Answer: B. bending light
Explanation:
The phenomenom of vision in human eye is thanks to refraction (when light changes its direction as it passes through one medium to another), and this is what the cornea and the lens do.
When the ray of light encounters the eye, the first thing it finds is the <u>cornea</u>, which<u> bends this ray and begins to form an image</u>, then light passes through the <u>pupil</u>, which is in charge of regulating the amount of light that enters in the eye.
After light travels through pupil it passes through the <u>lens</u>, where <u>the rays of light change the direction again in order to focus the formed image on the retina.
</u>
At this point it is important to note the formed image is downward, then the retina transforms light into electrical impulses that are sent to the brain through the optic nerve and finally the brain interprets these messages, and forms a right upward image.
In the image attached these parts can be seen.
<h2>
Answer: 7020.117 m/s</h2>
Explanation:
The velocity of a satellite describing a circular orbit is<u> constant</u> and defined by the following expression:
(1)
Where:
is the gravity constant
the mass of the massive body around which the satellite is orbiting, in this case, the Earth
.
the radius of the orbit (measured from the center of the planet to the satellite).
This means the radius of the orbit is equal to <u>the sum</u> of the average radius of the Earth
and the altitude of the satellite above the Earth's surface
.
Note this orbital speed, as well as orbital period, does not depend on the mass of the satellite. It depends on the mass of the massive body (the Earth).
Now, rewriting equation (1) with the known values: