1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Stolb23 [73]
3 years ago
6

________ occurs when an object in the outer reaches of the solar system passes between earth and a far distant star, temporarily

blocking light from the star.
Physics
1 answer:
murzikaleks [220]3 years ago
6 0
<span>Occulation occurs when an object in outer space reaches the solar system and passes between earth and a far distant star, temporarily blocking light from the star. Occulation is an astronomy term referring to when an object in the foreground blocks the view of an object in the background.</span>
You might be interested in
A baseball with a mass of 0.15 kg is moving at a speed of 40 m/s. What is
Afina-wow [57]

Answer:

120 J

Explanation:

KE = mv²/2 = (0.15 kg * [40 m/s]²)/2 = 120 J

6 0
3 years ago
Read 2 more answers
What is harmonic motion
Tanzania [10]

Answer:  NNOOOOOOOOOOOOOOOOOOONONONO

Explanation: simple harmonic motion, in physics, repetitive movement back and forth through an equilibrium, or central, position, so that the maximum displacement on one side of this position is equal to the maximum displacement on the other side. The time interval of each complete vibration is the same. The force responsible for the motion is always directed toward the equilibrium position and is directly proportional to the distance from it. That is, F = −kx, where F is the force, x is the displacement, and k is a constant. This relation is called Hooke’s law.

A specific example of a simple harmonic oscillator is the vibration of a mass attached to a vertical spring, the other end of which is fixed in a ceiling. At the maximum displacement −x, the spring is under its greatest tension, which forces the mass upward. At the maximum displacement +x, the spring reaches its greatest compression, which forces the mass back downward again. At either position of maximum displacement, the force is greatest and is directed toward the equilibrium position, the velocity (v) of the mass is zero, its acceleration is at a maximum, and the mass changes direction. At the equilibrium position, the velocity is at its maximum and the acceleration (a) has fallen to zero. Simple harmonic motion is characterized by this changing acceleration that always is directed toward the equilibrium position and is proportional to the displacement from the equilibrium position. Furthermore, the interval of time for each complete vibration is constant and does not depend on the size of the maximum displacement. In some form, therefore, simple harmonic motion is at the heart of timekeeping.

3 0
2 years ago
Choose the correct words from the box to complete the definition of resistance.
zzz [600]

Answer:

Opposition of passing a electric circuit

6 0
3 years ago
What is the month of winter
Tanya [424]
Period of months where the weather is the coldest and the days are the shortest.
5 0
3 years ago
Read 2 more answers
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
Other questions:
  • What does ice, liquid water and water vapor all <br> have in common?
    11·2 answers
  • You are holding the axle of a bicycle wheel with radius
    5·1 answer
  • Who is the president of Africa
    10·2 answers
  • PLEASE HELP! Compare and contrast between reflection and refraction. Be sure to be specific in your explanation and state in you
    15·1 answer
  • The resistivity of a metal increases slightly with increased temperature. This can be expressed as rho=rho0[1+α(T−T0)], where T0
    5·1 answer
  • Where is Ceres located
    15·2 answers
  • Describe the flow of energy that causes heat to be produced
    13·1 answer
  • HELP PLZZZZZ Consider the following data:
    15·2 answers
  • . A stationary mass explodes into two parts of mass 4 kg and 40 kg . If the K.E of larger mass is 100 J . The K.E of small mass
    5·1 answer
  • How much heat transfer is necessary to raise the temperature of a 13.6 kg piece of ice from −20.0ºC to 130ºC? specific heat capa
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!