1km=1000m; 1hr=3600secs
1km/hr=1000/3600= 5/18m/sec
To convert km/hr into m/sec, multiply the number by 5 and then divide it by 18.
18kmh-1= 18•5=90
90/18=5
5ms-1
Answer:
See the explanation below.
Explanation:
The units of work are consistent since if we work in the international system of measures we have the following dimensional quantities for velocity, distance and time.
s = displacement [m]
v and u = velocity [m/s]
t = time [s]
Now using these units in the given equation.
![s = 0.5*([m/s]+[m/s])*[s]\\s=0.5*[m/s]*[s]\\s = 0.5*[m]](https://tex.z-dn.net/?f=s%20%3D%200.5%2A%28%5Bm%2Fs%5D%2B%5Bm%2Fs%5D%29%2A%5Bs%5D%5C%5Cs%3D0.5%2A%5Bm%2Fs%5D%2A%5Bs%5D%5C%5Cs%20%3D%200.5%2A%5Bm%5D)
So the expression is good, and dimensional has consistency.
Dalton thought that atoms were indivisible particles, and Thomson's discovery of the electron proved the existence of subatomic particles. ... The positive and negative charges cancel producing a neutral atom. images.tutorvista.com. Later discoveries by Rutherford and others lead to additional revisions to atomic theory.
Answer:
21
Explanation: its actually 20.85 but i guess they round to 21
Answer:
The current is reduced to half of its original value.
Explanation:
- Assuming we can apply Ohm's Law to the circuit, as the internal resistance and the load resistor are in series, we can find the current I₁ as follows:

- where Rint = r and RL = r
- Replacing these values in I₁, we have:

- When the battery ages, if the internal resistance triples, the new current can be found using Ohm's Law again:

- We can find the relationship between I₂, and I₁, dividing both sides, as follows:

- The current when the internal resistance triples, is half of the original value, when the internal resistance was r, equal to the resistance of the load.