Answer:
True
Explanation:
if there was nothing to avoid of objects pulling towards one another many results may happen
There are two naturally occurring isotopes of gallium: mass of Ga-69 isotope is 68.9256 amu and its percentage abundance is 60.11%, let the mass of other isotope that is Ga-71 be X, the percentage abundance can be calculated as:
%Ga-71=100-60.11=39.89%
Atomic mass of an element is calculated by taking sum of atomic masses of its isotopes multiplied by their percentage abundance.
Thus, in this case:
Atomic mass= m(Ga-69)×%(Ga-69)+X×%(Ga-71)
From the periodic table, atomic mass of Ga is 69.723 amu.
Putting the values,

Thus,

Rearranging,

Therefore, mass of Ga-71 isotope is 70.9246 amu.
Answer:
0.03682 mL of mercury
Explanation:
We know the density of the mercury which is 13.58 g/mL
density = mass / volume
volume = mass / density
Now we can calculate the volume of 0.5 g of mercury:
volume = 0.5 / 13.58 = 0.03682 mL of mercury
Answer:Benzene typically undergoes reactions in which the aromatic ring is preserved.B. Benzene typically reacts with electrophiles where an aromatic proton is substituted by the electrophile
Explanation:
The reactions of benzene are such that the aromatic ring is not destroyed. Addition reactions destroy the aromatic ring hence they aren't typical reactions of benzene. Benzene rings are attacked by electrophiles in which reaction a proton is substituted by the electrophile. Alkenes only undergo addition reaction and not electrophilic substitution reaction.