<span>...a concordant intrusion.
In geology, "concordant" means the same as "sill" -- or, an intrusion that has gotten in between older layers of rock (or even beds of volcanic lava). An intrusion with boundaries parallel to layering in surrounding rocks suggests this, meaning it is considered to be a concordant intrusion.</span>
Answer:
Explanation:
This is a recoil problem, which is just another application of the Law of Momentum Conservation. The equation for us is:
which, in words, is
The momentum of the astronaut plus the momentum of the piece of equipment before the equipment is thrown has to be equal to the momentum of all that same stuff after the equipment is thrown. Filling in:
![[(90.0)(0)+(.50)(0)]_b=[(90.0)(v)+(.50)(-4.0)]_a](https://tex.z-dn.net/?f=%5B%2890.0%29%280%29%2B%28.50%29%280%29%5D_b%3D%5B%2890.0%29%28v%29%2B%28.50%29%28-4.0%29%5D_a)
Obviously, on the left side of the equation, nothing is moving so the whole left side equals 0. Doing the math on the right and paying specific attention to the sig fig's here (notice, I added a 0 after the 4 in the velocity value so our sig fig's are 2 instead of just 1. 1 is useless in most applications).
0 = 90.0v - 2.0 and
2.0 = 90.0v so
v = .022 m/s This is the rate at which he is moving TOWARDS the ship (negative was moving away from the ship, as indicated by the - in the problem). Now we can use the d = rt equation to find out how long this process will take him if he wants to reach his ship before he dies.
12 = .022t and
t = 550 seconds, which is the same thing as 9.2 minutes
Answer:
v = 12.86 km/h
v = 3.6 m/s
Explanation:
Given,
The distance, d = 13.5 km
The time, t = 21/20 h
= 1.05 h
The velocity of a body is defined as the distance traveled by the time taken.
v = d / t
= 13.5 km / 1.05 h
= 12.86 km/h
The conversion of km/h to m/s
1 km/h = 0.28 m/s
12.86 km/h = 12.86 x 0.28 m/s
= 3.6 m/s
Hence, the velocity in m/s is, v = 3.6 m/s
Vo = 18 m/s
angle 35 degrees
1) Components of the initial velocity
Vox = Vo*cos(35) = 18*cos(35) m/s = 14.74 m/s
Voy = Vo* sin(35) = 18*sin(35) m/s = 10.32 m/s
2) Equations of postion:
x = Vox*t
y = Voy*t - gt^2 / 2
3) Calculations
A) t = 0.5 s, t = 1.0 st = 1.5 s, t = 2.0 s
x = 14.74 * t
t = 0.5 s => x = 14.74 m/s * 0.5s = 7.37 m
t = 1.0 s => x = 14.74 m/s * 1.0s = 14.74 m
t = 1.5s => x = 22.11 m
t = 2s => x = 29.48 m
B)
y = Voy*t - gt^2 / 2
Voy = 10.32 m/s
g = 10 m/s (approximation)
y = 10.32*t - 5t^2
t = 0.5 s=> y = 3.91m
t = 1 s => y = 5.32m
t = 1.5 s => y = 4.23m
t = 2 s => y = 0.64 m
Answer:
The number of photons per second are
.
Explanation:
Given that,
Wavelength = 650 nm
Power = 45 W
Distance R= 17 m
Diameter = 5.0 mm
We need to calculate the number of photon per second emitted by light bulb
Using formula of energy

The power is


Put the value of E

Put the value into the formula


We need to calculate the surface area
Using formula of area


We need to calculate the number of photons entering into eye



Hence, The number of photons per second are
.