Answer:
No, the car will not make it to the top of the hill.
Explanation:
Let ΔX be how long the slope of the hill is, Δx be how far the car will travel along the slope of the hill, Ф be the angle the slope of the hill makes with the horizontal(bottom of the hill), ki be the kinetic energy of the car at the bottom of the hill and vi be the velocity of the car at the bottom of the hill and kf be the kinetic energy of the car when it stop moving at vf.
Since Ф is the angle between the horizontal and the slope, the relationship between the angle and the slope and the height of the hill is given by
sinФ = 12/ΔX
Which gives you the slope as
ΔX = 12/sinФ
Therefore for the car to reach the top of the hill it will have to travel ΔX.
Ignoring friction the total work done is given by
W = ΔK
W = (kf - ki)
Since the car will come to a stop, kf = 0 J
W = -ki
m×g×sinФ×Δx = 1/2×m×vi^2
(9.8)×sinФ×Δx = 1/2×(10)^2
sinФΔx = 5.1
Δx = 5.1/sinФ
ΔX>>Δx Ф ∈ (0° , 90°)
(Note that the maximum angle Ф is 90° because the slope of a hill can never be greater ≥ 90° because that would then mean the car cannot travel uphill.)
Since the car can never travel the distance of the slope, it can never make it to the top of the hill.
Answer:
A person who never gives up.
Explanation:
due to his passion for skateboarding he try's his never gives up until he will finally learns the trick.
False
Voltage in an electrochemical cell is in indication of equilibrium, higher will be the non-equilibrium, higher will be the voltage, or we can say at equilibrium voltage tends to 0.
Voltage in an electrical cell is the result of flow of electron, which flow due to difference in charge of the cells, higher the charge difference higher will be the voltage, as the equilibrium between the chemical cells established the flow of electron will stop, and the voltage of the cell tend to 0.