Answer:
The beam used is a negatively charged electron beam with a velocity of
v = E / B
Explanation:
After reading this long statement we can extract the data to work on the problem.
* They indicate that when the beam passes through the plates it deviates towards the positive plate, so the beam must be negative electrons.
* Now indicates that the electric field and the magnetic field are contracted and that the beam passes without deviating, so the electric and magnetic forces must be balanced

q E = qv B
v = E / B
this configuration is called speed selector
They ask us what type of beam was used.
The beam used is a negatively charged electron beam with a velocity of v = E / B
Answer:
To convert inches to centimeters, use an easy formula and multiply the length by the conversion ratio.
Since one inch is equal to 2.54 centimeters, this is the inches to cm formula to conver
Explanation:
Answer:
The answer is "No, Hoverboards are risky, and riders are in danger of falling".
Explanation:
It's also known as a self-balanced scooter, it handheld electrical devices traveling on two wheels are hoverboards. It dominated the industry around 2015 and since then has become more and more successful. A rider is balanced on a frame between these wheels, driven by battery-powered lithium-ion batteries.
A wave is a result of the disturbance in the equilibrium state. There are two types of wave, transverse and longitudinal. Transverse wave affects amplitude while longitudinal wave affects the frequency of the wave. As for the transverse wave, the magnitude of the perpendicular disturbance of the wave is directly proportional to the amplitude of the wave. The higher the transverse disturbance the higher the amplitude.
Answer:
k = 11,564 N / m, w = 6.06 rad / s
Explanation:
In this exercise we have a horizontal bar and a vertical spring not stretched, the bar is released, which due to the force of gravity begins to descend, in the position of Tea = 46º it is in equilibrium;
let's apply the equilibrium condition at this point
Axis y
W_{y} - Fr = 0
Fr = k y
let's use trigonometry for the weight, we assume that the angle is measured with respect to the horizontal
sin 46 =
/ W
W_{y} = W sin 46
we substitute
mg sin 46 = k y
k = mg / y sin 46
If the length of the bar is L
sin 46 = y / L
y = L sin46
we substitute
k = mg / L sin 46 sin 46
k = mg / L
for an explicit calculation the length of the bar must be known, for example L = 1 m
k = 1.18 9.8 / 1
k = 11,564 N / m
With this value we look for the angular velocity for the point tea = 30º
let's use the conservation of mechanical energy
starting point, higher
Em₀ = U = mgy
end point. Point at 30º
= K -Ke = ½ I w² - ½ k y²
em₀ = Em_{f}
mgy = ½ I w² - ½ k y²
w = √ (mgy + ½ ky²) 2 / I
the height by 30º
sin 30 = y / L
y = L sin 30
y = 0.5 m
the moment of inertia of a bar that rotates at one end is
I = ⅓ mL 2
I = ½ 1.18 12
I = 0.3933 kg m²
let's calculate
w = Ra (1.18 9.8 0.5 + ½ 11,564 0.5 2) 2 / 0.3933)
w = 6.06 rad / s