Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
An object moving with constant velocity
Answer:
speed wind Vw = 54.04 km / h θ = 87.9º
Explanation:
We have a speed vector composition exercise
In the half hour the airplane has traveled X = 108 km to the west, but is located at coordinated 119 km west and 27 km south
Let's add the vectors in each coordinate axis
X axis (East-West)
-Xvion - Xw = -119
Xw = -Xavion + 119
Xw = 119 -108
Xwi = 1 km
Calculate the speed for time of t = 0.5 h
Vwx = Xw / t
Vwx= 1 /0.5
Vwx = - 2 km / h
Y Axis (North-South)
Y plane - Yi = -27
Y plane = 0
Yw = 27 km
Vwy = 27 /0.5
Vwy = 54 km / h
Let's use the Pythagorean theorem and trigonometry to compose the answer
Vw = √ (Vwx² + Vwy²)
Vw = R 2² + 54²
Vw = 54.04 km / h
tan θ = Vwy / Vwx
tan θ = 54/2 = 27
θ = Tan⁻¹ 1 27
θ = 87.9º
The speed direction is 87. 9th measure In the third quadrant of the X axis in the direction 90-87.9 = 2.1º west from the south