Explanation:
When we increase the temperature of a substance then there will occur an increase in the kinetic energy of its molecules.
Also, K.E =
So, kinetic energy is directly proportional to the temperature.
Hence, when temperature and pressure are kept the same for both oxygen and hydrogen gas then values of their kinetic energy will be the same irrespective of their masses.
Thus, we can conclude that kinetic energy of oxygen molecule is the same as compared to hydrogen molecule.
First a balanced reaction equation must be established:

→

Now if mass of aluminum = 145 g
the moles of aluminum = (MASS) ÷ (MOLAR MASS) = 145 g ÷ 30 g/mol
= 4.83 mols
Now the mole ratio of Al : O₂ based on the equation is 4 : 3
[
4Al +
3 O₂ → 2 Al₂O₃]
∴ if moles of Al = 4.83 moles
then moles of O₂ = (4.83 mol ÷ 4) × 3
=
3.63 mol (to 2 sig. fig.)
Thus it can be concluded that
3.63 moles of oxygen is needed to react completely with 145 g of aluminum.
Answer:
The most common example is the molar volume of a gas at STP (Standard Temperature and Pressure), which is equal to 22.4 L for 1 mole of any ideal gas at a temperature equal to 273.15 K and a pressure equal to 1.00 atm.If an ideal gas at a constant temperature is initially at a pressure of 3.8 atm and is then allowed to expand to a volume of 5.6 L and a pressure of 2.1 - 18914… ... of 5.6 L and a pressure of 2.1 atm, what is the initial volume of the gas? ... An ideal gas is at a pressure of 1.4 atm and has a volume of 3 L.
Explanation:
I hope I help :)
Cost more. Gas and oil have a very steady low price, and also the sun is not always out.
Does that help?