Answer:
Doppler Theory
Explanation:
it's a theory regarding the change in wave frequency during the relative motion between a wave source and its observer.
Answer:
a) v = 1.075*10^7 m/s
b) FB = 7.57*10^-12 N
c) r = 10.1 cm
Explanation:
(a) To find the speed of the alpha particle you use the following formula for the kinetic energy:
(1)
q: charge of the particle = 2e = 2(1.6*10^-19 C) = 3.2*10^-19 C
V: potential difference = 1.2*10^6 V
You replace the values of the parameters in the equation (1):

The kinetic energy of the particle is also:
(2)
m: mass of the particle = 6.64*10^⁻27 kg
You solve the last equation for v:

the sped of the alpha particle is 1.075*10^6 m/s
b) The magnetic force on the particle is given by:

B: magnitude of the magnetic field = 2.2 T
The direction of the motion of the particle is perpendicular to the direction of the magnetic field. Then sinθ = 1

the force exerted by the magnetic field on the particle is 7.57*10^-12 N
c) The particle describes a circumference with a radius given by:

the radius of the trajectory of the electron is 10.1 cm
Answer:
Explanation:
Comment
You could calculate it out by assuming the same starting temperature for each substance. (You have to assume that the substances do start at the same temperature anyway).
That's like shooting 12 with 2 dice. It can be done, but aiming for a more common number is a better idea.
Same with this question.
You should just develop a rule. The rule will look like this
The greater the heat capacity the (higher or lower) the change in temperature.
The greater the heat capacity the lower the change in temperature
That's not your question. You want to know which substance will have the greatest temperature change given their heat capacities.
Answer
lead. It has the smallest heat capacity and therefore it's temperature change will be the greatest.
Hopes this helps:
Answer: Aluminum has 61 percent of the conductivity of copper, but has only 30 percent of the weight of copper. That means that a bare wire of aluminum weights half as much as a bare wire of copper that has the same electrical resistance. Aluminum is generally more inexpensive when compared to copper conductors.