1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
daser333 [38]
3 years ago
12

A 25,000 kg traveling east collides with a 2,000 kg truck standing still on the tracks. After the collision the train and truck

are moving together at 22.3 m/s. How fast was the train going to begin with? Assume there is no friction. My frame of reference sets east a positive​
Physics
1 answer:
Elis [28]3 years ago
3 0

Answer:

24.084 m/s

Explanation:

From the law of conservation of linear momentum

Total momentum before collision equals to the total momentum after collision

Since momentum=mv where m is mass and v is velocity

M_{truck}V_{truck}=V_{common}*(M_{truck} +M_{standing}) where M_{truck} is the mass of the truck, V_{truck} is velocity of the truck, V_{common} is the common velocity of moving and standing truck after collision and M_{standing} is the mass of the standing truck

Making V_{truck} the subject we obtain

V_{truck}=\frac { V_{common}*(M_{truck} +M_{standing})}{M_{truck}}

Substituting M_{truck} as 25000 Kg, V_{common} as 22.3 m/s, M_{standing} as 2000 Kg we obtain

V_{truck}=\frac { 22.3 m/s *(25000 Kg +2000 Kg)}{25000}= 24.084 m/s

Therefore, assuming no friction and considering that after collision they still move eastwards hence common velocity and initial truck velocities are positive

The truck was moving at 24.084 m/s

You might be interested in
Use Newton's laws to explain why a falling object dropped from a 57m tower accelerates initially but then reaches constant veloc
snow_lady [41]

Answer:

At the point of dropping the object, by Newton's first law due to gravitational force F_g = m × g, accelerates

By Newton's Second law the object reaches impacts on the air with the gravitational force resulting in changing momentum of m×(Final Velocity - Initial Velocity)

As the velocity increases, the rate of change of momentum becomes equivalent to the gravitational force and by Newton's third law, the action action and reaction are equal and opposite hence they cancel each other out

The body then moves at a constant uniform motion down according to Newton's first law

Explanation:

At the point the object of mass, m, is dropped from the height of the tower, the only force acting on the object is the gravitational force such that the object has an acceleration which is the acceleration due to gravity, g, and the gravitational force is therefore = m × g

As the speed of the object increases while the object is falling with the gravitational acceleration the rate at which the object cuts through layers of air which (by Newton's first law of motion, are at rest ) has some buoyancy effect also increases therefore, the object is constantly increasingly changing the momentum of the air which by Newton's second law results, at an high enough velocity, and by Newton's third law, in a force equal to the applied gravitational force

Therefore, the force of the air drag becomes equal to the gravitational force, cancelling each other out and the object then moves according to Newton;s first law, in uniform motion of a constant speed while still falling down.

5 0
3 years ago
Discuss the factors that are used to determine power.
True [87]
<span>The factors that are used to determine power are:
Voltage,current and the power factor.

</span><span>Power = Voltage x Current x K
Watts = Volts x Amps x Power Factor</span>
5 0
3 years ago
Read 2 more answers
The velocity of a 0.25kg model rocket changes from 15m/s [up] to 40m/s [up] in
vivado [14]

The force the escaping gas exerts of the rocket is 10.42 N.

<h3>Force escaping gas exerts</h3>

The force the escaping gas exerts of the rocket is calculated as follows;

F = m(v - u)/t

where;

  • m is mass of the rocket
  • v is the final velocity of the rocket
  • u is the initial velocity of the rocket
  • t is time of motion

F = (0.25)(40 - 15)/0.6

F = 10.42 N

Thus, the force the escaping gas exerts of the rocket is 10.42 N.

Learn more about force here: brainly.com/question/12970081

#SPJ1

7 0
2 years ago
A bowling ball is launched from the top of a building at an angle of 35° above the horizontal with an initial speed of 15 m/s. T
Mamont248 [21]

Let y_0 be the height of the building and thus the initial height of the ball. The ball's altitude at time t is given by

y=y_0+\left(15\dfrac{\rm m}{\rm s}\right)\sin35^\circ\,t-\dfrac g2t^2

where g=9.80\frac{\rm m}{\mathrm s^2} is the acceleration due to gravity.

The ball reaches the ground when y=0 after t=2.9\,\mathrm s. Solve for y_0:

0=y_0+\left(15\dfrac{\rm m}{\rm s}\right)\sin35^\circ(2.9\,\mathrm s)-\dfrac12\left(9.80\dfrac{\rm m}{\mathrm s^2}\right)(2.9\,\mathrm s)^2

\implies y_0\approx16.258\,\mathrm m

so the building is about 16 m tall (keeping track of significant digits).

3 0
3 years ago
What is 1/12+7/9 hj​
Umnica [9.8K]

Explanation:

\frac{1}{12}  +  \frac{7}{9}  \\  \\  =  \frac{1 \times 3}{12 \times 3}  +  \frac{7 \times 4}{9 \times 4} \\  \\  =  \frac{3}{36}  +  \frac{28}{36}  \\  \\  =  \frac{3 + 28}{36}  \\  \\  =  \frac{31}{36}  \\  \\   \huge \purple{ \boxed{\therefore \:  \frac{1}{12}  +  \frac{7}{9}  =  \frac{31}{36} }} \\

6 0
3 years ago
Read 2 more answers
Other questions:
  • A person holding a 15.0 kg containing one 50.0 g bullet is riding on a train that is traveling at 75.0 km/h east. If the man fir
    5·1 answer
  • What is light intensity? ​
    11·2 answers
  • Diffuse reflection occurs when the size of surface irregularities is
    8·1 answer
  • A series combination of two resistors, 7.25 ω and 4.03 ω, is connected to a 9.00 v battery.
    6·1 answer
  • I WILL MARK YOU THE BRAINLIEST
    15·2 answers
  • Working to ensure that women get paid the same as a man for the same work is an example of? Social dysfunction, soical conflict,
    7·1 answer
  • A student's backpack has a mass of 9.6 kg. The student applies a force of 94.08 N [up] while walking through 1.4 km [E] to get t
    8·1 answer
  • If the rock was going 90m/s when it hit the ground. How many seconds would it have been falling for?
    7·1 answer
  • A person runs 400 meters in a straight line. What is their distance and displacement.
    13·1 answer
  • A stationary charge is located between the poles of a horseshoe magnet. Is a magnetic force excerted of the charge? why?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!