To solve this problem we will apply the principle of conservation of energy. For this purpose, potential energy is equivalent to kinetic energy, and this clearly depends on the position of the body. In turn, we also note that the height traveled is twice that of the rigid rod, therefore applying these concepts we will have





Therefore the minimum speed at the bottom is required to make the ball go over the top of the circle is 4.67m/s
IDK ghjfnhgfjmrmhjgfhgfmmfh
Explanation:
The given data is as follows.
mass = 0.20 kg
displacement = 2.6 cm
Kinetic energy = 1.4 J
Spring potential energy = 2.2 J
Now, we will calculate the total energy present present as follows.
Total energy = Kinetic energy + spring potential energy
= 1.4 J + 2.2 J
= 3.6 Joules
As maximum kinetic energy of the object will be equal to the total energy.
So, K.E = Total energy
= 3.6 J
Also, we know that
K.E = 
or, v = 
= 
= 
= 6 m/s
thus, we can conclude that maximum speed of the mass during its oscillation is 6 m/s.
Answer:
Middle childhood
Explanation:
<em>Middle childhood happens around ages 6 to 12,</em> is a stage in the human development characterized by the steady rate of physical growth of the individual in contrast with the fast rate of emotional, cognitive and emotional development that will prepare them for future stages (adolescence and adulthood).
I hope you find this information useful and interesting! Good luck!