They are called isotopes.
Isotopes have the same number of electrons and protons in their unionized state. They differ in the number of neutrons. The first and simplest example is hydrogen.
The most common hydrogen has
1 proton
1 electron and
0 neutrons
It has 2 cousins
1 proton
1 electron
1 neutron
And
1 proton
1 electron
2 neutrons.
Most elements have some differences in the number of neutrons present in their nuclei. Cesium and Xenon have the most number of isotopes. Each has 36. You wonder how the atoms are held together.
I answered all of them except 2 for you to do
Hope this helps :))
Answer:
ΔH = 125.94kJ
Explanation:
It is possible to make algebraic sum of reactions to obtain ΔH of reactions (Hess's law). In the problem:
1. 2W(s) + 3O2(g) → 2WO3(s) ΔH = -1685.4 kJ
2. 2H2(g) + O2(g) → 2H2O(g) ΔH = -477.84 kJ
-1/2 (1):
WO3(s) → W(s) + 3/2O2(g) ΔH = 842.7kJ
3/2 (2):
3H2(g) + 3/2O2(g) → 3H2O(g) ΔH = -716.76kJ
The sum of last both reactions:
WO3(s) + 3H2(g) → W(s) + 3H2O(g)
ΔH = 842.7kJ -716.76kJ
<h3>ΔH = 125.94kJ </h3>
Answer:
After Eris was discovered, they had to decide whether Eris was a planet or not. If they decided it wasn't a planet, they had to also decide whether Pluto should be counted as a planet since Eris and Pluto were quite similar. They were the same size, and they were both part of the Kuiper Belt.
Explanation:
Answer:
Explanation:
The triple point of carbon dioxide is 5.11 atmosphere at -56.6 degree celsius . At pressure greater than 5.11 , solid carbon dioxide liquefies , as it is warmed. At pressure lesser than 5.11 atmosphere , it will go into gaseous state without liquefying . Excessive pressure helps liquification process.
So maximum pressure required is 5.11 atmosphere. Beyond this pressure , solid CO2 will liquify.