Answer:
<u>From the main motor cortex, Brodmann region 4 premotor areas and the primary somatosensory cortex .</u>
<u />
Explanation:
The corticospinal tract originates in many regions of the brain, including
- the motor regions,
- main somatosensory cortex
- pre-motor regions
The corticospinal tract allows for voluntary control of motor functions.
30% of the neurons in the corticospinal regions are found in the primary motor cortex. 40% are split up in several regions; the parietal lobe, somatosensory cortex and the cingulate gyrus.
The axon is a tube enclosed in and insulated by the myelin sheath. It serves as a link to impulses for certain neurons that often comprise axon hillocks that are junctions between the axon and the cell body.
Answer:
E (Red shows incomplete dominance over white)
Explanation:
This portrays a monohybrid cross involving a single gene coding for flower colour in snapdragon plants. According to the question, a purebreeding red flowered (homozygous) plant is crossed with a purebreeding white flowered (homozygous) plant to produce an all pink flowered offspring. This phenomenon is called INCOMPLETE DOMINANCE.
Mendel, in his experiments, discovered that an allele can mask the expression of another in a heterozygous state. He called the allele that masks DOMINANT allele while the allele that is masked RECESSIVE allele. However, exceptions like INCOMPLETE DOMINANCE, has occurred in the sense that an allele does not completely mask the expression of its allelic pair, instead an intermediate phenotype, which is a combination/blending of both parental phenotypes is produced.
In this case, the red flowered snapdragon (RR) does not completely cover up the expression of white flower (rr), hence a hybrid/heterozygous offspring is produced that combines the phenotypic characteristics of both parents to form an intermediate flower colour (pink). Hence, it can be said that Red flower is incompletely dominant over white flower or no allele/trait is dominant or recessive to another.
Answer:
b
Explanation:
nitrogen will slowly go down due to not having enough organic matter
Answer:
From largest to smallest they are: Universe, galaxy, solar system, star, planet, moon and asteroid.