Since the distance is 560 miles and the bus goes 268 miles per hour, the answer can be given as:
If 268=1 hour
560=?
560/268*1 hour =2(rounded to nearest ones)
Therefore it will take the train approximately 2 hours to travel between both cities.
F(x) = (x² - 3x - 10)(x + 4) becomes (x - 5)(x + 2)(x + 4) when completely factored. Now set each binomial equal to zero.
x - 5 = 0
x = 5
x + 2 = 0
x = - 2
x + 4 = 0
x = - 4
Your zeros are at x = - 4, - 2, and 5. Or at (- 4, 0), (- 2, 0), and (5, 0).

- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D