To find the surface area of a single cube we first nees to take the cube root of 8cm3 which is 2.
Now we know that the length of each side is 2 and we can find the area of one side by doing 2x2 which is 4.
To find the total surface area of one cube we do 4 times 6 side giving us a total of 24cm2.
To find the total surface area of the 8 individual cubes, we multiply 24cm2 by 8 to give us a total of 192cm2.
Now to find the total surface area of the one large cube, we know that each side of one of the small cubes is 4cm2 and the large cube is set up so that there are two levels of four cubes right on top of each other. So, the total area of each side of the large cube is 4cm2 times 4 which gives us 16cm2.
Then we multiply 16cm2 by 6 sides to give us a total surface area of 96cm2.
The ratio of the surface area of the single large cube comapred to the total surface area of the single cubes is 96:192
We can further simplify this ratio:
96:192
48:96
24:48
12:24
6:12
3:6
1:2
I think you can google this because I really don’t know the answer I’m so sorry
Answer:
1.86 m
Explanation:
First, find the time it takes to travel the horizontal distance. Given:
Δx = 52 m
v₀ = 26 m/s cos 31.5° ≈ 22.2 m/s
a = 0 m/s²
Find: t
Δx = v₀ t + ½ at²
52 m = (22.2 m/s) t + ½ (0 m/s²) t²
t = 2.35 s
Next, find the vertical displacement. Given:
v₀ = 26 m/s sin 31.5° ≈ 13.6 m/s
a = -9.8 m/s²
t = 2.35 s
Find: Δy
Δy = v₀ t + ½ at²
Δy = (13.6 m/s) (2.35 s) + ½ (-9.8 m/s²) (2.35 s)²
Δy = 4.91 m
The distance between the ball and the crossbar is:
4.91 m − 3.05 m = 1.86 m
Answer:
966 mph
Explanation:
Using as convention:
- East --> positive x-direction
- North --> Positive y-direction
The x- and y- components of the initial velocity of the jet can be written as

While the components of the velocity of the wind are

So the components of the resultant velocity of the jet are

And the new speed is the magnitude of the resultant velocity:

Answer:
The mantle exists above the crust of the earth