Answer:
The nature of volcanic eruptions is highly dependent on magma viscosity and also on dissolved gas content. ... long it takes the treacle to flow from one end of a boiling tube to the other.
Answer:
A large area of a forest will likely have higher biodiversity than a smaller area of the same forest.
A half acre of rainforest would likely have greater biodiversity than a full acre of desert.
Explanation:
biodiversity of an ecosystem can be simply explain as the variability that exist in the ecosystem. These are difference that exist between living organism in terms of their habitat, their species and so on. However there exist different relationship between the area of ecosystem and the biodiversity of an ecosystem such that An ecosystem with large area of a forest will likely have higher biodiversity than a smaller area of the same forest.
Another one is that A half acre of rainforest would likely have greater biodiversity than a full acre of desert.
Answer:
block velocity v = 0.09186 = 9.18 10⁻² m/s and speed bollet v₀ = 11.5 m / s
Explanation:
We will solve this problem using the concepts of the moment, let's try a system formed by the two bodies, the bullet and the block; In this system all scaffolds during the crash are internal, consequently, the moment is preserved.
Let's write the moment in two moments before the crash and after the crash, let's call the mass of the bullet (m) and the mass of the Block (M)
Before the crash
p₀ = m v₀ + 0
After the crash
= (m + M) v
p₀ =
m v₀ = (m + M) v (1)
Now let's lock after the two bodies are joined, in this case the mechanical energy is conserved, write it in two moments after the crash and when you have the maximum compression of the spring
Initial
Em₀ = K = ½ m v2
Final
E = Ke = ½ k x2
Emo = E
½ m v² = ½ k x²
v² = k/m x²
Let's look for the spring constant (k), with Hook's law
F = -k x
k = -F / x
k = - 0.75 / -0.25
k = 3 N / m
Let's calculate the speed
v = √(k/m) x
v = √ (3/8.00) 0.15
v = 0.09186 = 9.18 10⁻² m/s
This is the spped of the block plus bullet rsystem right after the crash
We substitute calculate in equation (1)
m v₀ = (m + M) v
v₀ = v (m + M) / m
v₀ = 0.09186 (0.008 + 0.992) /0.008
v₀ = 11.5 m / s
Find the number of hours by dividing the distance by mph. The number of hours will be to the left of the decimal point:
250 miles / 65 mph
= 3.846153846
= 3 hours
2) Find the number of minutes by multiplying what is remaining from step 1 by 60 minutes. The minutes will be to the left of the decimal point:
0.846153846 x 60
= 50.76923076
= 50 minutes
3) Find the number of seconds by multiplying what is remaining from step 2 by 60 seconds. The seconds will be to the left of the decimal point:
0.76923076 x 60
= 46.1538456
= 46 seconds
So 3 hours 50 mins and 46 seconds