The force acting on a moving charge is known as the magnetic force. The force acting on the charge will be 3.75 N.
<h3>What is the force exerted on the charge?</h3>
Magnetic fields only exert a force on a moving electric charge. A moving charge generates a magnetic field. With an increase in charge and magnetic field strength, this force rises.
when charges have higher velocities, the force is stronger. However, the magnetic force is always perpendicular to the velocity.
Mathematically the force exerted on the charge will be
F=qvBsinα
F= force acting on the charge
v = velocity of charge
q = charge
F=qvBsinα
F=2.5×10⁻⁶×5.0×10³×3.0×10²
F=37.5 N
Hence The force acting on the charge will be 3.75 N.
To learn more about the force acting on charge refer to ;
brainly.com/question/451411
F = q V B sinα
Where F is the force applied to a moving charge.
V = charge velocity
q stands for charge.
α = angle between V and B directions
As a result, the moving charge is subjected to a force of 3.75 Newton.
At the highest point in its trajectory, the ball's acceleration is zero but its velocity is not zero.
<h3>What's the velocity of the ball at the highest point of the trajectory?</h3>
- At the highest point, the ball doesn't go more high. So its vertical velocity is zero.
- However, the ball moves horizontal, so its horizontal component of velocity is non - zero i.e. u×cosθ.
- u= initial velocity, θ= angle of projection
<h3>What's the acceleration of the ball at the highest point of projectile?</h3>
- During the whole projectile motion, the earth exerts the gravitational force with a acceleration of gravity along vertical direction.
- But as there's no acceleration along vertical direction, so the acceleration along vertical direction is zero.
Thus, we can conclude that the acceleration is zero and velocity is non-zero at the highest point projectile motion.
Disclaimer: The question was given incomplete on the portal. Here is the complete question.
Question: Player kicks a soccer ball in a high arc toward the opponent's goal. At the highest point in its trajectory
A- neither the ball's velocity nor its acceleration are zero.
B- the ball's acceleration points upward.
C- the ball's acceleration is zero but its velocity is not zero.
D- the ball's velocity points downward.
Learn more about the projectile motion here:
brainly.com/question/24216590
#SPJ1
The given question is incomplete. The complete question is as follows.
In a nuclear physics experiment, a proton (mass
kg, charge +e =
C) is fired directly at a target nucleus of unknown charge. (You can treat both objects as point charges, and assume that the nucleus remains at rest.) When it is far from its target, the proton has speed
m/s. The proton comes momentarily to rest at a distance
m from the center of the target nucleus, then flies back in the direction from which it came. What is the electric potential energy of the proton and nucleus when they are
m apart?
Explanation:
The given data is as follows.
Mass of proton =
kg
Charge of proton = 
Speed of proton = 
Distance traveled = 
We will calculate the electric potential energy of the proton and the nucleus by conservation of energy as follows.
=

where, 
U = 
Putting the given values into the above formula as follows.
U = 
= 
= 
Therefore, we can conclude that the electric potential energy of the proton and nucleus is
.
Brown black fur and medium tail
Answer:
A tornado can, surprisingly, cause a supercell, so the answer would be C.) tornado
Explanation:
When cold, dry, and polar air meet warm, moist tropical air, the atmosphere becomes unstable causing a supercell.
Final Answer:
C.) tornado
Afterthought:
<em>Please give BRAINLEST!</em>
Thanks,
-johannelbekian