Answer:
They include frequency, period,speed,amplitude and phase
Answer:
a. 1.78x10⁻³ = Ka
2.75 = pKa
b. It is irrelevant.
Explanation:
a. The neutralization of a weak acid, HA, with a base can help to find Ka of the acid.
Equilibrium is:
HA ⇄ H⁺ + A⁻
And Ka is defined as:
Ka = [H⁺] [A⁻] / [HA]
The HA reacts with the base, XOH, thus:
HA + XOH → H₂O + A⁻ + X⁺
As you require 26.0mL of the base to consume all HA, if you add 13mL, the moles of HA will be the half of the initial moles and, the other half, will be A⁻
That means:
[HA] = [A⁻]
It is possible to obtain pKa from H-H equation (Equation used to find pH of a buffer), thus:
pH = pKa + log₁₀ [A⁻] / [HA]
Replacing:
2.75 = pKa + log₁₀ [A⁻] / [HA]
As [HA] = [A⁻]
2.75 = pKa + log₁₀ 1
<h3>2.75 = pKa</h3>
Knowing pKa = -log Ka
2.75 = -log Ka
10^-2.75 = Ka
<h3>1.78x10⁻³ = Ka</h3>
b. As you can see, the initial concentration of the acid was not necessary. The only thing you must know is that in the half of the titration, [HA] = [A⁻]. Thus, the initial concentration of the acid doesn't affect the initial calculation.
Answer:
Oxidation
Explanation:
Mg loses 2e- for it to gain it's stability hence the reaction above is oxidation
note: Oxidation is the loss of electrons while reduction is the gain of electrons
Answer:
About 16.1 grams of oxygen gas.
Explanation:
The reaction between magnesium and oxygen can be described by the equation:
24.4 grams of Mg reacted with O₂ to produce 40.5 grams of MgO. We want to determine the mass of O₂ in the chemical change.
Compute using stoichiometry. From the equation, we know that two moles of MgO is produced from every one mole of O₂. Therefore, we can:
- Convert grams of MgO to moles of MgO.
- Moles of MgO to moles of O₂
- And moles of O₂ to grams of O₂.
The molecular weights of MgO and O₂ are 40.31 g/mol and 32.00 g/mol, respectively.
Dimensional analysis:
In conclusion, about 16.1 grams of oxygen gas was reacted.
You will obtain the same result if you compute with the 24.4 grams of Mg instead:
Option 2, Br. I'll go over why all other three options are incorrect.
Option 1 - Krypton is a Noble gas, and so it doesn't need to accept electrons since it has an octet.
Option 3 and 4 - Both Calcium and Barium are alkaline earth metals, and give away electrons, since they only have 2.
-T.B.