Answer:
Fe(NO3)3 + 3 NaOH ===》Fe(OH)3 + 3 NaNO3
Answer: 18.65L
Explanation:
Given that,
Original volume of oxygen (V1) = 30.0L
Original temperature of oxygen (T1) = 200°C
[Convert temperature in Celsius to Kelvin by adding 273.
So, (200°C + 273 = 473K)]
New volume of oxygen V2 = ?
New temperature of oxygen T2 = 1°C
(1°C + 273 = 274K)
Since volume and temperature are given while pressure is held constant, apply the formula for Charle's law
V1/T1 = V2/T2
30.0L/473K = V2/294K
To get the value of V2, cross multiply
30.0L x 294K = 473K x V2
8820L•K = 473K•V2
Divide both sides by 473K
8820L•K / 473K = 473K•V2/473K
18.65L = V2
Thus, the new volume of oxygen is 18.65 liters.
Answer:
A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.
Explanation:
Answer:
no no no who are these some look good but are black what is this
Answer:
The number, such as 98.7 FM, of a radio station represents:
- <u>the frequency in which is transmitted the radio signal</u>.
Explanation:
<em>The radio FM is the modulated frequency, which means that all the information is sent by just a signal, with different frequencies which difference them</em>, <u>the radio FM use the frequencies from 88 MHz until 108 Mhz (MHz is a measuring unit for the frequency), with a minimal space among them of 0.2 MHz</u>, this last means that you could find a signal in 88.0 MHz, and the next should be 88.2 MHz, next 88.4 MHz and so (at least, regularly the space between two frequencies is more than 0.2 MHz).