Most of the time, fossils are only partially uncovered on site. They are removed individually or in blocks and often protected by plaster jackets before being taken back ...
We can rearrange the ideal gas equation:
PV = nRT, where n is the number of moles equivalent to:
n = mass / Mr
PV = mRT/Mr
m/V = PMr/RT
density = PMr / RT; where Mr and R are constant.
Size (length+width) approx.
Answer:
V = 85.2
Explanation:
STP = 273K and 1 atm
Considering what we know about STP, we get the moles, temperature, and pressure. Using the ideal gas law we can find the volume (PV = nRT). Plug in our variables: (1 * V = 3.80 * R * 273). Since we are dealing with atm and not kPA or mmHg, we use the constant for atm (0.0821) which we use for R. (So.. now our equation is 1 * V = 3.80 * 0.0821 * 273). We now multiply the right side to get 85.17054. So... V = 85.2 considering sigificant figures (this is the part where I am the least sure of, since I havent done sig figs in a while)