Answer:
4.034x10^24 atoms
Explanation:
6.7 x 6.023x10^23 = 4.034x10^24 atoms
<h3>
Answer:</h3>
0.0157 g Au
<h3>
General Formulas and Concepts:</h3>
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.113 g Au
<u>Step 2: Identify Conversions</u>
Molar Mass of Au - 197.87 g/mol
<u>Step 3: Convert</u>
<u />
= 0.015733 g Au
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
0.015733 g Au ≈ 0.0157 g Au
Therefore Chlorine is losing electrons and being oxidized. Hope it helps.
Answer:
C) SN2 and E2
Explanation:
For this question, we have analyzed the <u>substrate</u> and the <u>base/nucleophile</u>. The substrate, in this case, is 1-iodohexane and the base/nucleophile is potassium tert-butoxide.
<u>Substrate</u>
<u />
In the 1-iodohexane the iodide "I" is bonded to a primary carbon (carbon 1). Therefore we will have a <u>primary substrate</u>. If we have a primary substrate an Sn1 can not take place. We can not have a <u>primary carbocation</u> due to this instability. So, we can disccard options A) and B).
<u>Base/nucleophile</u>
<u />
In the potassium tert-butoxide we have an ionic compound. A positive charge is placed in the potassium atom a negative charge is placed in the oxygen of the ter-butoxide ion. So, we will have a <u>strong base</u> (a molecule with the ability to remove electrons) and a <u>strong nucleophile</u> (a molecule with ability to bond with an electrophile). With all this in mind, w<u>e can not have an E1 reaction</u>.
With both analyses, the answer is C).
See figure 1
I hope it helps!