The kinetic-molecular theory explains the properties of the gases in terms of energy, size and motion of their particles.
The assumptions that the kinetic-moletuclar theory makes about the characteristics of gas particles are:
1. Gases are constituted by a large amount of particles (atoms or molecules) symilar to solid spherical sphers, in constant and random motion.
2. Gas particles move in straight line until collide with another particle or the walls of the vessel.
3. Gas particles are so small compared to the distances that separate them, that the volume of the gas is considered empty space: the volume of the particles is neglected.
4. Beside the already mentioned collisions with the walls of the vessels or between the particles, there is no interaction (attractive or repulsive forces) acting on the gas particles.
5. The collisions between gas particles or with the walls of the vessel are elastic: there is not loss of energy.
6. The average kinetic energy of the particles in a gas depends only on the absolute temperature of the gas: at a given temperatue every gas have the same average kinetic energy.
That collection of assumptions are used to explain such things as: the relation of pressure withthe number of particles, the relation of pressure and temperature, the relation of pressure and volume, the relation of volume and temperature, Avogadro's hypothesis (relation of volume and number of particles), Dalton's Law of partial pressures, and both effusion and difusion.
The nitrite ion has one less oxygen than the nitrate ion. Nitrate is NO3-1 while the nitrite ion is NO2-.
Hi! :)
Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + 2 H2O
(18.2 mL) x (0.45 M Ba(OH)2) x (2 mol HNO3 / 1 mol Ba(OH)2) / (38.5 mL HNO3) = 0.43 M HNO3
Answer:
What r u trying to ask? you need to put more stuff in your question on here so we can answer it.
Explanation:
Answer:
Close to the calculated endpoint of a titration - <u>Partially open</u>
At the beginning of a titration - <u>Completely open</u>
Filling the buret with titrant - <u>Completely closed</u>
Conditioning the buret with the titrant - <u>Completely closed</u>
Explanation:
'Titration' is depicted as the process under which the concentration of some substances in a solution is determined by adding measured amounts of some other substance until a rection is displayed to be complete.
As per the question, the stopcock would remain completely open when the process of titration starts. After the buret is successfully placed, the titrant is carefully put through the buret in the stopcock which is entirely closed. Thereafter, when the titrant and the buret are conditioned, the stopcock must remain closed for correct results. Then, when the process is near the estimated end-point and the solution begins to turn its color, the stopcock would be slightly open before the reading of the endpoint for adding the drops of titrant for final observation.