Answer:
C
Explanation:
Temperature is directly related to kinetic energy (KE). As we raise temperature, we are raising KE, as well. Particles with more KE move more quickly and with more force.
This means that these particles are more likely to collide with each other and react to allow the chemical reaction to follow through. In turn, if the chemical reaction is more likely to go to completion, the reaction rate increases, eliminating A and B.
The concentration of the solute is not affected by the temperature; in other words, temperature will not increase or decrease the amount of solute in the solution, so eliminate D.
Thus the answer is C.
Hope this helps!
Answer:
Teaching
Explanation:
Teaching or tutoring is a type of human job that gives strength to other individuals by impacting them with the necessary knowledge or skills they required to survive in life.
Teachers or tutors are the people that carry out this task.
It should be understood that the most important thing that people need to survive in life is information. And when they are given the information they will do exploit.
For a candle to burn, it requires a spark, which provides the activation energy for the oxidation reaction of the hydrocarbon making the candle.
It also requires oxygen to facilitate the oxidation of the hydrocarbon.
Therefore the two main requirements of combustion of a candle are oxygen and a spark (or an initial flame)
Answer:
30.4 g. NH3
Explanation:
This problem tells us that the hydrogen (H2) is the limiting reactant, as there is "an excess of nitrogen." Using stoichiometry (the relationship between the various species of the equation), we can see that for every 3 moles of H2 consumed, 2 moles of NH3 are produced.
But before we can use that relationship to find the number of grams of ammonia produced, we need to convert the given grams of hydrogen into moles:
5.4 g x [1 mol H2/(1.008x2 g.)] = 2.67857 mol H2 (not using significant figures yet; want to be as accurate as possible)
Now, we can use the relationship between H2 and NH3.
2.67857 mol H2 x (2 mol NH3/3 mol H2) = 1.7857 mol NH3
Now, we have the number of moles of ammonia produced, but the answer asks us for grams. Use the molar mass of ammonia to convert.
1.7857 mol NH3 x 17.034 g. NH3/mol NH3 = 30.4 g. NH3 (used a default # of 3 sig figs)
The correct options are as follows:
1. A.
A synthesis reaction is a type of reaction in which two or more reactants combine together to form only one product. Synthesis reaction always release energy in form of light and heat, therefore, they are usually exothermic reactions. In the option given in A, nitrogen and nitrogen combine together to form ammonia; this is a synthesis reaction.
2. D
A radioactive half life refers to the amount of time it will take for half of an original radioactive isotope to decay.
In the question given above, the half life of the element is 1000. Thus, in 1000 years only half of the original amount will remain. In another 1000 years only 1/4 of the original amount will remain and in another 1000 years only 1/8 of the original amount will remain. Therefore, it will take 3 half lives before 1/8 of the original sample remain.<span />