Answer:
D. H₂SO₄
Explanation:
Bronsted acids are those that donate H+ ions. In this question, H₂SO₄ is a Bronsted acid.
Note: H₂SO₄ is one of seven strong acids that you should try to memorize.
1-H NMR spectroscopy tool will be used for distinguishing a sample of 1,2,2-tribromopropane from 1,1,2-tribromopropane.
The preferred method for determining or validating the structure of organic molecules or those containing protons is H NMR. When compared to other nuclei, a solution-state proton spectrum may be obtained relatively quickly, and it contains a wealth of knowledge regarding a compound's structure.
It can be calculated by simply counting the number of unique hydrogens on one side of the symmetry plane will give you the count of signals individual molecules emit in a 1H NMR spectrum.
Therefore, 1-H NMR spectroscopy tool will be used for distinguishing a sample of 1,2,2-tribromopropane from 1,1,2-tribromopropane.
To know more about 1-H NMR spectroscopy
brainly.com/question/20111886
#SPJ4
Answer:
2H2 + O2 -----> 2H2O
Not sure about the second question though.
Answer:
All right. So let's calculate the density of a glass marble. Remember that the formula for density is mass over volume. So if I know that the masses 18.5 g. And I know that the um volume is 6.45 cubic centimeters. I can go ahead and answer this to three significant figures. So it's going to be 2.87 grams per cubic centimeter. Okay, that's our density. Now, density is an intensive process. Okay. We're an intensive property. I really should say. It doesn't depend on how much you have. Mhm. If I have one marble, its density is going to be 2.87 g per cubic centimeter. If I have two marbles, the density will be the same because I'll double the mass and I'll also double the volume. So when I divide them I'll get the same number. Okay, that's what makes it an intensive property. No matter how many marbles I have, they'll have the same density. Mass though is not an intensive property. So if I have six marbles and I want to know what the massive six marbles is. Well, I know the mass of each marble is 18.5 g. So the mass of six marbles Is going to be 100 11 g. Because mass is an extensive property. It depends on how much you have. If I change the number of marbles, I'm going to change the mass. That's an extensive property. All right. So we've calculated the density. We've calculated the mass and then what happens to the density of one marble compared to six marbles as we mentioned before. Since densities and intensive property, the densities will be the same, no matter how may.
Explanation:
Answer:
The value of the missing equilibrium constant ( of the first equation) is 1.72
Explanation:
First equation: 2A + B ↔ A2B Kc = TO BE DETERMINED
⇒ The equilibrium expression for this equation is written as: [A2B]/[A]²[B]
Second equation: A2B + B ↔ A2B2 Kc= 16.4
⇒ The equilibrium expression is written as: [A2B2]/[A2B][B]
Third equation: 2A + 2B ↔ A2B2 Kc = 28.2
⇒ The equilibrium expression is written as: [A2B2]/ [A]²[B]²
If we add the first to the second equation
2A + B + B ↔ A2B2 the equilibrium constant Kc will be X(16.4)
But the sum of these 2 equations, is the same as the third equation ( 2A + 2B ↔ A2B2) with Kc = 28.2
So this means: 28.2 = X(16.4)
or X = 28.2/16.4
X = 1.72
with X = Kc of the first equation
The value of the missing equilibrium constant ( of the first equation) is 1.72