The answer is A track star speeding up as he sprints to the finish line.
Answer:
a) Xbenzene = 0.283
b) Xtoluene = 0.717
Explanation:
At T = 20°C:
⇒ vapor pressure of benzene (P*b) = 75 torr
⇒ vapor pressure toluene (P*t) = 22 torr
Raoult's law:
∴ Pi: partial pressure of i
∴ Xi: mole fraction
∴ P*i: vapor pressure at T
a) solution: benzene (b) + toluene (t)
∴ Psln = 37 torr; at T=20°C
⇒ Psln = Pb + Pt
∴ Pb = (Xb)*(P*b)
∴ Pt = (Xt)*(P*t)
∴ Xb + Xt = 1
⇒ Psln = 37 torr = (Xb)(75 torr) + (1 - Xb)(22 torr)
⇒ 37 torr - 22 torr = (75 torr)Xb - (22 torr)Xb
⇒ 15 torr = 53 torrXb
⇒ Xb = 15 torr / 53 torr
⇒ Xb = 0.283
b) Xb + Xt = 1
⇒ Xt = 1 - Xb
⇒ Xt = 1 - 0.283
⇒ Xt = 0.717
Answer:
5.41 g
Explanation:
Considering:
Or,
Given :
For tetraphenyl phosphonium chloride :
Molarity = 33.0 mM = 0.033 M (As, 1 mM = 0.001 M)
Volume = 0.45 L
Thus, moles of tetraphenyl phosphonium chloride :
Moles of TPPCl = 0.01485 moles
Molar mass of TPPCl = 342.39 g/mol
The formula for the calculation of moles is shown below:
Thus,
Mass of TPPCl = 5.0845 g
Also,
TPPCl is 94.0 % pure.
It means that 94.0 g is present in 100 g of powder
5.0845 g is present in 5.41 g of the powder.
<u>Answer - 5.41 g</u>
Answer:
56.2÷6.02×10^23
=9.34×10^23
Explanation:
Divide the given mass of the atom by the mass of an Atom (the avogadro's constant) to find the number of atoms in the given mass.
Answer:
The relevant equation is:
CaCO₃ + 2HCl → CaCl₂ + H₂O + CO₂
Explanation:
1 mol of calcium carbonate can react to 2 moles of Hydrochloric acid to produce 1 mol of water, 1 mol of calcium chloride and 1 mol of carbon dioxide.
The formed CO₂ is the reason why you noticed bubbles as the reaction took place