If they're different sizes and densities, you are able to separate the substances.
Answer:
1. c) shiny
2) True. Reactivity is a chemical property.
Answer:
Pb is the substance that experiments the greatest temperature change.
Explanation:
The specific heat capacity refers to the amount of heat energy required to raise in 1 degree the temperature of 1 gram of substance. The highest the heat capacity, the more energy it would be required. These variables are related through the equation:
Q = c . m . ΔT
where,
Q is the amount of heat energy provided (J)
c is the specific heat capacity (J/g.°C)
m is the mass of the substance
ΔT is the change in temperature
Since the question is about the change in temperature, we can rearrange the equation like this:

All the substances in the options have the same mass (m=10.0g) and absorb the same amount of heat (Q=100.0J), so the change in temperature depends only on the specific heat capacity. We can see in the last equation that they are inversely proportional; the lower c, the greater ΔT. Since we are looking for the greatest temperature change, It must be the one with the lowest c, namely, Pb with c = 0.128 J/g°C. This makes sense because Pb is a metal and therefore a good conductor of heat.
Its change in temperature is:

B directly; inversely
Pressure and volume have an inverse relationship (when one increases the other increases) while volume and temperature are direct (if one increases so does the other)
Note: these relationships are only true if other factors are constant such as the temperature, and amount (in moles).
Answer:
7,94 minutes
Explanation:
If the descomposition of HBr(gr) into elemental species have a rate constant, then this reaction belongs to a zero-order reaction kinetics, where the r<em>eaction rate does not depend on the concentration of the reactants. </em>
For the zero-order reactions, concentration-time equation can be written as follows:
[A] = - Kt + [Ao]
where:
- [A]: concentration of the reactant A at the <em>t </em>time,
- [A]o: initial concentration of the reactant A,
- K: rate constant,
- t: elapsed time of the reaction
<u>To solve the problem, we just replace our data in the concentration-time equation, and we clear the value of t.</u>
Data:
K = 4.2 ×10−3atm/s,
[A]o=[HBr]o= 2 atm,
[A]=[HBr]=0 atm (all HBr(g) is gone)
<em>We clear the incognita :</em>
[A] = - Kt + [Ao]............. Kt = [Ao] - [A]
t = ([Ao] - [A])/K
<em>We replace the numerical values:</em>
t = (2 atm - 0 atm)/4.2 ×10−3atm/s = 476,19 s = 7,94 minutes
So, we need 7,94 minutes to achieve complete conversion into elements ([HBr]=0).