Answer:
8.934 g
Step-by-step explanation:
We know we will need a balanced equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 192.12 44.01
H₃C₆H₅O₇ + 3NaHCO₃ ⟶ Na₃C₆H₅O₇ + 3H₂O + 3CO₂
m/g: 13.00
For ease of writing, let's write H₃C₆H₅O₇ as H₃Cit.
(a) Calculate the <em>moles of H₃Cit
</em>
n = 13.00 g × (1 mol H₃Cit /192.12 g H₃Cit)
n = 0.067 67 mol H₃Cit
(b) Calculate the <em>moles of CO₂
</em>
The molar ratio is (3 mol CO₂/1 mol H₃Cit)
n = 0.067 67 mol H₃Cit × (3 mol CO₂/1 mol H₃Cit)
n = 0.2030 mol CO₂
(c) Calculate the <em>mass of CO₂
</em>
m = 0.2030 mol CO₂ × (44.01 g CO₂/1 mol CO₂)
m = 8.934 g CO₂
True, it would slow down.
Volume = Mass / Density
Volume = .842 / 2.70
Volume = .31185 cubic centimeters
Aluminum square * depth = .31185 cubic centimeters
6 * 6 * depth = .31185 cubic centimeters
depth = (.31185 cubic centimeters) / 36
<span><span><span>depth = 0.0086625514
centimeters
(That must be aluminum foil.)
</span> </span></span>
4.0
i think it has something to do with molar ratios and finding the limiting reactant
4.0 mol NO * 2 mol NO2/2 mol NO = 4.0 moles of NO2
4.0 mol O2 * 2 mol NO2/1 mol O2 = 8.0 moles of NO2
so the limiting reactant (the reactant that runs out the quickest leaving an excess) is NO
once the limiting reactant is found, we can use that data for that substance to calculate the amount of product
4.0 mol NO * 2 mol NO2/2 mole NO = 4.0 moles of NO2