Answer:
Explanation:
Combustion reaction is given below,
C₂H₅OH(l) + 3O₂(g) ⇒ 2CO₂(g) + 3H₂O(g)
Provided that such a combustion has a normal enthalpy,
ΔH°rxn = -1270 kJ/mol
That would be 1 mol reacting to release of ethanol,
⇒ -1270 kJ of heat
Now,
0.383 Ethanol mol responds to release or unlock,
(c) Determine the final temperature of the air in the room after the combustion.
Given that :
specific heat c = 1.005 J/(g. °C)
m = 5.56 ×10⁴ g
Using the relation:
q = mcΔT
- 486.34 = 5.56 ×10⁴ × 1.005 × ΔT
ΔT= (486.34 × 1000 )/5.56×10⁴ × 1.005
ΔT= 836.88 °C
ΔT= T₂ - T₁
T₂ = ΔT + T₁
T₂ = 836.88 °C + 21.7°C
T₂ = 858.58 °C
Therefore, the final temperature of the air in the room after combustion is 858.58 °C
Answer:
A
Explanation:
What the equation is tell you is that for every 3 mols of NO2 you get 2 mol of HNO3
3 mol NO2 / 2 mol HNO2 ===> 300.00 mol NO2 / x Cross multiply
3x = 2 * 300
3x = 600 Divide by 3
3x/3 = 600/3 Do the division
x = 200.00
Answer:
<h3>electrical energy is the energy of Kinetic energy </h3>
Explanation:
<h3>I hope l helped you.</h3>
Answer:
<h2>0.059 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>0.059 moles</h3>
Hope this helps you
It is a combustion reaction because when methane burns with oxyzen it produces carbon dioxide,water and heat and light.