Answer:
The third shell would be empty, so the eight electrons on the second level would be the outermost after the atom lost one electron
Explanation:
When an atom is bonded with other atoms, a more stable configuration must be reached, which is why the energy of the molecule is less than the energy of the individual atoms, for this to happen in general, electrons are shared or lost and gained in each atom, depending on the electronegative of the same.
If we analyze an atom within the molecule, its last shell is full, in the case of atoms with few electrons in this shell, they are lost and in the case of many electors in this shell, it gains electrons to have eight (8) in total.
When reviewing the different answers, the correct one is:
* The third shell would be empty, so the eight electrons on the second level would be the outermost after the atom lost one electron
Answer:
It is 52° below the celestial equator.
Explanation:
The declination is the angle in degrees measured north (+) or south (-) of the an imaginary line called the celestial equator.
The celestial equator is a projection of the earth's equator on the celestial sphere. imaginary
The star named Canopus has a declination of approximately –52°.
Since the angle is negative, this shows that it is south or below the celestial equator and at 52° south of the celestial equator.
Thus, the star named Caponus is 52° below the celestial equator.
Answer:
Explanation:
The moment of inertia is the integral of the product of the squared distance by the mass differential. Is the mass equivalent in the rotational motion
a) True. When the moment of inertia is increased, more force is needed to reach acceleration, so it is more difficult to change the angular velocity that depends proportionally on the acceleration
b) True. The moment of inertia is part of the kinetic energy, which is composed of a linear and an angular part. Therefore, when applying the energy conservation theorem, the potential energy is transformed into kinetic energy, the rotational part increases with the moment of inertia, so there is less energy left for the linear part and consequently it falls slower
c) True. The moment of inertial proportional to the angular acceleration, when the acceleration decreases as well. Therefore, a smaller force can achieve the value of acceleration and the change in angular velocity. Consequently, less force is needed is easier