Answer:
let me check the answer for you
When Emmett is lifting a box
vertically, the forces that must be added to calculate the total force are: the
gravitational force, tension force(the force exerted by Emmett to the box and
the force exerted by the box to Emmett), and air resistance force.
You have to use the specific heat equation.
Q = cmΔT where Q is the energy, c is specific heat, m is mass, and ΔT is change in temp.
So we can substitute our variables into the equation.
30000J = (390g)(3.9J*g/C)ΔT
Solving for ΔT, we get:
30000J/[(390g)*(3.9J*g/C) = ΔT
ΔT = 19.72386588C
I'm assuming the temperature is C, since it was not specified.
Hope this helps!
Answer:
its constant i think
Explanation:
or its stable dunno which term will they be using
Answer:
Explanation:
The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.
So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.
force on it due to rest of the charges will be equal and opposite so
k3q Q / x² =k 8q Q / (L+x)²
8x² = 3 (L+x)²
2√2 x = √3 (L+x)
2√2 x - √3 x = √3 L
x(2√2 - √3 ) = √3 L
x = √3 L / (2√2 - √3 )
Let us consider the balancing force on 3q
force on it due to -Q and -8q will be equal
kQ . 3q / x² = k3q 8q / L²
Q = 8q (x² / L²)
so charge required = - 8q (x² / L²)
and its distance from x on negative x side = √3 L / (2√2 - √3 )