Answer:
the mass of the raft is 68.4 kg
Explanation:
Since Mass is defined as Volume times Density, start by calculating the volume of the raft:
Volume = length x width x high = 1.5 m x 1.0 m x 0.12 m = 0.18 m^3
and now multiply it times the given density in order to find its mass:
Mass = Volume x Density = 0.18 m^3 x 380 kg/m^3 = 68.4 kg.
Notice that the m^3 units cancel out (they are in numerator and in denominator) leaving just the kg (a unit of mass) in the answer.
Therefore, the mass of the raft is 68.4 kg
Answer:
y = 1.19 m and λ = 8.6036 10⁻⁷ m
Explanation:
This is a slit interference problem, the expression for destructive interference is
d sin θ = m λ
indicate that for the angle of θ = 35º it is in the third order m = 3 and the separation of the slits is d = 4.50 10⁻⁶ m
λ = d sin θ / m
let's calculate
λ = 4.50 10⁻⁶ sin 35 /3
λ = 8.6036 10⁻⁷ m
for the separation distance from the central stripe, we use trigonometry
tan θ= y / L
y = L tan θ
the distance L is measured from the slits, it indicates that the light source is at x = 0.30 m from the slits
L = 2 -0.30
L = 1.70 m
let's calculate
y = 1.70 tan 35
y = 1.19 m
To solve this problem we will apply the concept related to the electric field. The magnitude of each electric force with which a pair of determined charges at rest interacts has a relationship directly proportional to the product of the magnitude of both, but inversely proportional to the square of the segment that exists between them. Mathematically can be expressed as,

Here,
k = Coulomb's constant
V = Voltage
r = Distance
Replacing we have


Therefore the magnitude of the electric field is 
Answer:
quantitative
Explanation: quantitative research is better for scientist.
D. Yield signs is the answer